
Scripting JChemPaint
Egon Willighagen

Published November 20, 2008 

Citation

Willighagen, E. (2008). Scripting JChemPaint. In chem-bla-ics. chem-bla-ics. https://doi.org/

10.59350/yhdxa-ft783 

Abstract

Today and tomorrow, Stefan, Gilleain, Arvid and I are having a JChemPaint Developers Workshop

in Uppsala, to sprint the development of JChemPaint3, for which Niels layed out the foundation

already a long time ago. 

Copyright

Copyright © Egon Willighagen 2008. Distributed under the terms of the Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are credited. 

chem-bla-ics

https://orcid.org/0000-0001-7542-0286
https://orcid.org/0000-0001-7542-0286
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode


Today and tomorrow, Stefan, Gilleain, Arvid and I are having a JChemPaint Developers Workshop

in Uppsala, to sprint the development of JChemPaint3, for which Niels layed out the foundation

already a long time ago.

Gilleain and Arvid are merging their branches into a single code base, while Stefan is working

on the Swing application and applet. The Bioclipse SWT-based widget is being developed for 

Bioclipse2.

The new design separates widget/graphics toolkit specifics from the chemical drawing and

editing logic. Regarding the editing functionality, this basically comes down to have a

semantically meaningful edit API. This allows us to convert both Swing and SWT mouse events

into things like addAtom("C", atom), which would add a carbon to an already existing atom.

However, without too much phantasy, it allows adding a scripting language. This is what I have

been working on. Right now, the following API is available from the Bioclipse2 JavaScript

console (via the jcp namespace, in random order):

ICDKMolecule jcp.getModel()

IAtom getClosestAtom(Point2d)

setModel(ICDKMolecule) (for really fancy things)

removeAtom(IAtom)

IBond getClosestBond(Point2d)

updateView() (all edit command issue this automatically)

addAtom(String,Point2d)

addAtom(String,IAtom) (which works out coordinates automatically)

Point2d newPoint2d(double,double)

updateImplicitHydrogenCounts()

moveTo(IAtom, Point2d)

setSymbol(IAtom,String)

setCharge(IAtom,int)

setMassNumber(IAtom,int)

addBond(IAtom,IAtom)

moveTo(IBond,Point2d)

setOrder(IBond,IBond.Order)

setWedgeType(IBond,int)

IBond.Order getOrder(int)

zap() (sort of sudo rm -Rf /*)

cleanup() (calculate 2D coordinates from scratch)

addRing(IAtom,int)

addPhenyl(IAtom)

This API (many more method will follow) is not really aimed at the end user, who will simply

point and click. The goal of this scripting language is, at least at this moment, to test the

underlying implementation using Bioclipse. Future applications, however, may include simple

scripts which use some logic to convert the editor content. For example, replacing a t-butyl

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

chem-bla-ics

Scripting JChemPaint • Page 2

http://gilleain.blogspot.com/
https://apps.sourceforge.net/mediawiki/cdk/index.php?title=JChemPaintWorkshop2008
http://progz-jchem.blogspot.com/
http://cdk.svn.sourceforge.net/viewvc/cdk/cdk/branches/jchempaint-primary/
http://cdk.svn.sourceforge.net/viewvc/cdk/jchempaint/trunk/
http://bioclipse.svn.sourceforge.net/viewvc/bioclipse/bioclipse2/trunk/plugins/net.bioclipse.cdk.jchempaint.view/


fragment into a pseudo atom “t-Bu”. The key thing to remember, is that this will allow Bioclipse

to have non-CDK-based programs act on the JChemPaint editor content (e.g. using getModel()

and setModel(ICDKMolecule)). More on that later.

A simple script could look like: Or, as screenshot:

chem-bla-ics

Scripting JChemPaint • Page 3


	Scripting JChemPaint
	Citation
	Abstract
	Copyright


