
Jumbo 5.0 and the CDK
Egon Willighagen

Published December 10, 2005

Citation

Willighagen, E. (2005). Jumbo 5.0 and the CDK. In chem-bla-ics. chem-bla-ics. https://doi.org/

10.59350/y0mte-4ns18

Keywords

Cdk, Cml, Java

Abstract

I reported earlier that the CDK has been updated in CVS to use CML from the new Jumbo 5.0.

The transition actually involved a lot of changes in the CDK, some I would like to address in the

following comments. One thing is that CML write support (not reading!) uses the new Jumbo

library which requires Java 1.5. Thus, if Java 1.5 is not available, then CML writing should not be

compiled. This is how this is done.

Copyright

Copyright © Egon Willighagen 2005. Distributed under the terms of the Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are credited.

chem-bla-ics

https://orcid.org/0000-0001-7542-0286
https://orcid.org/0000-0001-7542-0286
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

I reported earlier that the CDK has been updated in CVS to use CML from the new Jumbo 5.0.

The transition actually involved a lot of changes in the CDK, some I would like to address in the

following comments. One thing is that CML write support (not reading!) uses the new Jumbo

library which requires Java 1.5. Thus, if Java 1.5 is not available, then CML writing should not be

compiled. This is how this is done.

The JavaDoc
The CDK makes extensive use of JavaDoc taglets. CDK uses tags of type @cdk.SOMETAG. And an

important tag in this case, is the @cdk.require tag, becuase it allows us to make the CDK build

system aware that the class requires Java 5.0 to be compiled. Thus, we have for example this

code in CVS, of which bits are:

/**

 * Serializes a SetOfMolecules or a Molecule object to CML 2 code.

 * Chemical Markup Language is an XML based file format {@cdk.cite PMR99}.

 * Output can be redirected to other Writer objects like StringWriter

 * and FileWriter.

 *

 * @cdk.module libio-cml

 * @cdk.builddepends xom-1.0.jar

 * @cdk.depends jumbo50.jar

 * @cdk.require java1.5

 */

public class CMLWriter extends DefaultChemObjectWriter {

}

As probably is clear compiling this jars requires a two jars to be present, of which the

jumbo50.jar itself is not required for compiling the class source code. It also shows the use of

the @cdk.require tag.

The build.xml
Because the CDK still does not require Java 1.5, the CDK is supposed to be buildable with Java 1.4

(the oldest supported Java release). The Ant build.xml script is quite able to conditionally leave

out compiling parts of the CDK, if configured correctly using proper JavaDoc tags, as explained

earlier.

First, the build.xml checks what libraries are available for compiling certain parts of the CDK. For

example, the build.xml code to check for Java 1.5 looks like:

<condition property="isJava15">

 <contains string="${java.version}" substring="1.5"/>

</condition>

chem-bla-ics

Jumbo 5.0 and the CDK • Page 2

https://egonw.github.io/blog/2005/12/08/jumbo-50-and-cml-support-in-cdk.html
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/taglet/spec/com/sun/tools/doclets/Taglet.html
http://cvs.sourceforge.net/viewcvs.py/cdk/cdk/src/org/openscience/cdk/io/CMLWriter.java?rev=1.90&view=log
http://cvs.sourceforge.net/viewcvs.py/cdk/cdk/src/org/openscience/cdk/io/CMLWriter.java?rev=1.90&view=log
http://ant.apache.org/
http://cvs.sourceforge.net/viewcvs.py/cdk/cdk/build.xml?rev=1.310&view=markup

Run ant info to see what is being checked for, or look at the build.xml source code for the

check target.

All compiling is done by the compile-module target, and there it in- and excludes bits of the

CDK depending on the checked conditions:

<javac srcdir="${build.src}" destdir="${build}" optimize="${optimization}"

 debug="${debug}" deprecation="${deprecation}">

 <excludesfile name="${src}/java1.4+.javafiles" if="isJava13"/>

 <excludesfile name="${src}/java1.4.javafiles" unless="isJava14"/>

 <excludesfile name="${src}/java1.5.javafiles" unless="isJava15"/>

 <excludesfile name="${src}/ant1.6.javafiles" unless="hasAnt16"/>

 <excludesfile name="${src}/r-project.javafiles" unless="rispresent"/>

 <includesfile name="${src}/${module}.javafiles"/>

</javac>

Keep in mind that the *.javafiles are created with JavaDoc based on the CDK JavaDoc tags

mentioned earlier.

The build.xml 2
While the above mechanism has been present since for some time now, having jumbo50.jar in

CVS made the situation a bit trickier: the jumbo50.jar uses the 49.0 class format used in Java

1.5, and cannot be processed by Java 1.4 systems. Since the classpath used when compiling CDK

source code, is defined in configuration files for those modules in src/META-INF, the problem

did not occur when compiling the modules. However, it did show an error in the

reallyRunDoclet target today, when I was creating the *.javafiles with JavaDoc. The

solution was trivial:

<target name="reallyRunDoclet" id="reallyRunDoclet"

 depends="compileDoclet" unless="dotjavafiles.uptodate">

 <javadoc private="true" maxmemory="128m">

 <classpath>

 <fileset dir="${lib}">

 <include name="*.jar" />

 <!-- some jars require some Java version -->

 <exclude name="jumbo50.jar" unless="isJava15"/>

 </fileset>

 <fileset dir="${lib}/libio">

 <include name="*.jar" />

 </fileset>

 <fileset dir="${devellib}">

 <include name="*.jar" />

chem-bla-ics

Jumbo 5.0 and the CDK • Page 3

http://cvs.sourceforge.net/viewcvs.py/cdk/cdk/src/META-INF/

 </fileset>

 </classpath>

 <doclet name="net.sf.cdk.tools.MakeJavaFilesFilesDoclet"

 path="${doc}/javadoc"/>

 <packageset dir="${src}">

 <include name="org/openscience/cdk/**"/>

 </packageset>

</javadoc>

cdk.applications.FileConvertor
There is another area of interest: the FileConvertor, which is, sort of, CDK’s OpenBabel’s

babel variant. The FileConvertor must be compiled in all cases, so we need to conditionally

instantiate the CMLWriter, which is not really a problem. However, compiling the source code is

more troublesome: the CMLWriter class must be loaded on runtime, and not occur hardcoded

in the source code.

In the past I have solved this by using .getInstance() constructs, but the ChemObjectWriter

interface does not define this functionality, so I decided to use the java.lang.reflect

mechanism:

} else if (format.equalsIgnoreCase("CML")) {

 Class cmlWriterClass = this.getClass().getClassLoader().

 loadClass("org.opscience.cdk.io.CMLWriter");

 if (cmlWriterClass != null) {

 writer = (ChemObjectWriter)cmlWriterClass.newInstance();

 }

 Constructor constructor = writer.getClass().getConstructor(new Class[]

{Writer.class});

 writer = (ChemObjectWriter)constructor.newInstance(new Object[]

{fileWriter});

} else {

Now, this has been, by far, the longest blog item I have written so far. I hope it gave you good

insight in some techniques CDK uses to deal with situations where functionality might, or might

not, be present at build and at run time.

chem-bla-ics

Jumbo 5.0 and the CDK • Page 4

http://openbabel.sf.net/
http://cvs.sourceforge.net/viewcvs.py/cdk/cdk/src/org/openscience/cdk/io/ChemObjectWriter.java?rev=1.19&view=log
http://cvs.sourceforge.net/viewcvs.py/cdk/cdk/src/org/openscience/cdk/io/ChemObjectWriter.java?rev=1.19&view=log

	Jumbo 5.0 and the CDK
	Citation
	Keywords
	Abstract
	Copyright
	The JavaDoc
	The build.xml
	The build.xml 2
	cdk.applications.FileConvertor

