chem-bla-ics

State of CDK 1.2.0...

Egon Willighagen
Published December 26, 2008

Citation
Willighagen, E. (2008). State of CDK 1.2.0... In chem-bla-ics. chem-bla-ics. https://doi.org/
10.59350/xgy88-kfs02

Keywords
Cdk, Junit, Java

Abstract

The reason why | have not blogged in more than two weeks, was that | was hoping to blog
about the CDK 1.2.0 release. This was originally aimed at September, slipped into October,
November and then December. There were only three show stoppers (see this wiki page), one of
which the IChemObject interfaces were not properly tested.

Copyright

Copyright © Egon Willighagen 2008. Distributed under the terms of the Creative Commons
Attribution 4.0 International License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

https://orcid.org/0000-0001-7542-0286
https://orcid.org/0000-0001-7542-0286
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

chem-bla-ics

The reason why I have not blogged in more than two weeks, was that | was hoping to blog
about the CDK 1.2.0 release. This was originally aimed at September, slipped into October,
November and then December. There were only three show stoppers (see this wiki page), one of
which the IChemObject interfaces were not properly tested.

The problem was that the unit tests for the methods in superinterfaces were not applied to
implementations of subinterfaces. For example, the unit test for IElement.getSymbol() was
not applied to the class Atom, which implements IAtom which is a subinterfaces of IElement.

In fixing this, | had to take some hurdles. For example: the unit test classes used a set up
following the implementations; CDK 1.2.x has three implementations of the interfaces: data,
datadebug and nonotify. The last does not send around update notifications, and rough tests
indicate it is about 10% faster. The second implementation sends messages to the debugger for
every modification of the data classes, which is, clearly, useful for debugging purposes.

However, the JUnit4 test classes were basically doing the same. The unit test DebugAtomTest
inherited form AtomTest, and only overwrote customizations. AtomTest, itself, inherited from
ElementTest. That's where things got broken. In the single implementation set up, this would
have been fine, but to allow testing of all three implementations, getBuilder() had to be
used.

And when | implemented that, | did not realize that ElementTest would do a test like:

IElement element = builder.newElement();
// test IElement functionality

However, while the use of builder ensure testing of all three implementations, it does not run
these tests on IAtom implementations.

The followed a long series of patches to get this fixed. One major first patch, was to define unit
test frameworks like AbstractElementTest which formalized running unit tests on any
implementation, as | noticed that quite a few tests were still testing one particular
implementation. This allowed DebugElementTest to extend AbstractElementTest, instead of
ElementTest, which would now extend AbstractElementTest too.

OK, with that out of the way, it was time to fix running the unit test for IElement.getSymbol()
on IAtom.getSymbol(), which required the removal of the use of IChemObjectBuilder
implementations. So, | introduced newChemObject () which would return a fresh instance of the
actually tested implementation. That is, DebugAtomTest would return a new DebugAtom, and
the getSymbol() test would now run on DebugAtom and not DebugElement. Good.

No, not good. The actual implementation | was using, looks like:

public class DebugElementTest extend AbstractElementTest {
@BeforeClass public static void setup() {
setChemObject(new DebugElement());

State of CDK 1.2.0... - Page 2

https://apps.sourceforge.net/mediawiki/cdk/index.php?title=CDK_1.2_TODO
http://cheminfo.informatics.indiana.edu/~rguha/code/java/nightly/api/org/openscience/cdk/interfaces/IChemObject.html

chem-bla-ics

}

public abstract class AbstractElementTest extend AbstractChemObjectTest {
@Test public void testGetSymbol() {
IElement element = (IElement)newChemObject();
// do testing

public abstract class AbstractChemObjectTest {

private IChemObject testedObject;

public static setChemObject(IChemObject object) {
this.testedObject = object;

}

public IChemObject setChemObject(IChemObject object) {
return (IChemObject)testedObject.clone();

} // just imagine it has try/catch here too

// and here the tests for the IChemObject API

@Test public void testGetProperties() {
IChemObject element = (IChemObject)newChemObject();
// do testing

}

Excellent! No.

Well, yes. The above system works, but made many unit tests fail, because of bugs in clone()
methods. The full scope has to be explored, but at least IPolymer.clone() is not doing what |
would expect it to do. Either am wrong, and need to overwrite the clone unit tests of
superinterfaces in AbstractPolymerTest, or the implementations needs fixing. | emailed the
cdk-devel mailing list and filed a bug report. But having about 1000 unit tests fail, because of
clone broken, is something | did not like. For example, as it makes bug fixing more difficult.

So, next step was to find an approach that did not require clone, but give some interesting
insights in the Java language. JUnit4 requires the @BeforeClass method to be static. This
means | cannot have a non-static DebugElementTest method return an instance. And, you
cannot overwrite a static method! That had never occured to me in the past.
DebugElementTest.newChemObject () does not overwrite
AbstractChemObjectTest.newChemObject which is somewhere upstream.

But, after discussing matters with Carl, I ended up with this approach:

State of CDK 1.2.0... - Page 3

chem-bla-ics

public abstract class AbstractChemObjectTest extends CDKTestCase {
private static ITestObjectBuilder builder;
public static void setTestObjectBuilder(ITestObjectBuilder builder) {
AbstractChemObjectTest.builder = builder;
}
public static IChemObject newChemObject() {
return AbstractChemObjectTest.builder.newTestObject();

public interface ITestObjectBuilder {
public IChemObject newTestObject();

public class DebugAtomTest extends AbstractAtomTest {
@BeforeClass public static void setUp() {
setTestObjectBuilder(new ITestObjectBuilder() {
public IChemObject newTestObject() {
return new DebugAtom();

State of CDK 1.2.0... - Page 4

	State of CDK 1.2.0…
	Citation
	Keywords
	Abstract
	Copyright

