
Why computational reproducibility
matters

Published June 20, 2025 

Citation

Hinsen, K. (2025, June 20). Why computational reproducibility matters. Konrad Hinsen’s Blog.

https://doi.org/10.59350/vpfzy-wrr35 

Copyright

Copyright © None 2025. Distributed under the terms of the Creative Commons Attribution 4.0

International License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited. 

Konrad Hinsen’s blog

https://orcid.org/0000-0003-0330-9428
https://orcid.org/0000-0003-0330-9428
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode


Thirty years after my first contact with computational (ir)reproducibility, I am happy to note that

many things have improved. Reproducibility, computational and otherwise, is increasingly

recognized as an important aspect of scientific quality control, and mostly considered worth

striving for. However, I also note that more and more people, including reproducibility activists,

have lost contact with the day-to-day reality in which reproducibility matters. Reproducibility is

becoming an item on a checklist, and its precise incarnation the subject of political bickering

aimed at making it easy to check off that item. So let's take a look at why computational

reproducibility matters for researchers.

If you have read papers from the field of cryptography, you probably know Alice and Bob. They

used to invest a lot of effort into communicating privately, making sure that nobody else could

listen to them. But then, Alice and Bob discovered Open Science, and now they talk to each

other in public spaces, in addition to publishing all their data and code of course. And now we

know that they are researchers in computational biophysics!

Let's listen to Alice and Bob as they meet at a conference.

Alice: I have computed the equilibrium distance between the ligand and the active site of our

pet protein. It's 0.9 nm.

Bob: I have computed the same distance, but I find 1.1 nm.

For any Open Science practitioner, the next step should be obvious.

Alice: Uhhh... Well... I will look at your code, and you look at mine. Let's meet again tomorrow.

Bob: OK!

The next day, they meet again.

Alice: I couldn't compile your code. Look at this error message!

Bob: It works for me! You use Debian 12? I still run Debian 9. That's surely what makes the

difference. But I also have good news: I managed to run your code on my machine. The only

problem is that... I get 0.8 nm.

Alice: I use libode version 3.4. The documentation says it must be compiled with gcc 10 or

later. You probably have an older gcc.

Bob: Uhhh... Well... I will have to install a virtual machine with Debian 12, and you with Debian 9.

Shall we meet again in a week?

Alice: OK!

A week later, no solution is in sight.

Alice: Under Debian 9, I managed to run your code. I get 1.1 nm, like you do. But I don't

understand why! Your code is unreadable.

Konrad Hinsen’s blog

Why computational reproducibility matters • Page 2

https://en.wikipedia.org/wiki/Alice_and_Bob


Bob: Under Debian 12, your code yields 0.85 nm for me. That's not your value of 0.9 nm. Nor 1.1

nm as I get using my method. I don't understand why!

That's what real life looks like. Whatever reproducibility policies you advocate, they aren't worth

much unless they open a way for Alice and Bob to figure out why they get different numbers.

Reproducibility needs to support effective debugging.

In terms of the increasingly consensual terminology defined by the US National Academies of

Science, Engineering, and Medicine, Alice and Bob have two issues to resolve:

Bob cannot reproduce Alice's value of 0.9 nm. He finds 0.85 nm instead, in spite of

running the same code in what he believes to be the same computational environment:

Debian 12.

Neither Alice nor Bob can replicate the other's finding using their own code. Alice finds

0.9 nm, Bob finds 1.1 nm.

Now let's consider two popular recipes for reproducibility:

Just use Docker. Both Alice and Bob should package their code plus environment as a

container image. They could then exchange their images, and each check that they

retrieve the other's value. Problem 1 is solved. However, the investigation of problem 2

becomes nearly impossible. The code inside the container images is a black box.

Exploring point 2 would require reading, recompiling, and modifying the code. That's not

possible if all you have is a container image.

Just use conda. For some reason, many people seem to believe that conda has some

magical capability to solve reproducibility issues - see this report for example. In reality,

it's not fundamentally different from Debian's package manager (and many others), and

in practice it is worse because conda users tend to focus on fast-moving bleeding-edge

code whereas Debian package maintainers place a high value on stability. If Alice and

Bob used conda, they would probably both fail at even compiling the other's code in

their own environments, and also fail at trying to reproduce the other's environment.

Neither simple recipe is really helpful. Both containerization and package managers are useful

tools in the quest for reproducibility, but there is no "just use..." that really works. A big reason

is that neither container nor packaging tools were developed with reproducibility in mind. They

are by design deployment technologies, meant to facilitate the task of installing, updating, and

running software on a computer. Which is an important task of course, but it's not

reproducibility.

Let's tackle the question from the other end: what would Alice and Bob need for debugging?

To investigate the reproducibility issue, they need to understand why the same code, compiled

and run on two different installations of Debian 12, yields different results. Alternatively, to

eliminate the reproducibility issue, they would need a more precise way to describe and

reconstruct an environment than the label "Debian 12". And to understand their replicability

issue, they need their own code plus as much as possible of its dependencies to be

1. 

2. 

1. 

2. 

Konrad Hinsen’s blog

Why computational reproducibility matters • Page 3

https://www.nationalacademies.org/our-work/reproducibility-and-replicability-in-science
https://www.nationalacademies.org/our-work/reproducibility-and-replicability-in-science
https://www.docker.com/
https://docs.conda.io/en/latest/
https://doi.org/10.1038/d41586-023-01469-0


understandable, and easy to modify and run, because exploring replicability invariably leads to

tinkering with each other's code.

The fundamental reason for the reproducibility issue is that "Debian 12" is not a precise

specification for a computational environment. Packages get constantly updated in between

two Debian releases. To make it worse, the order in which packages are installed can also make

a difference. If you want to understand why, follow the MOOC, in particular its second module,

"Managing software".

If Alice had provided a precisely specified computational environment, rather than just saying

"Debian 12", then the reproducibility issue in the above story would simply disappear. Bob

would have run Alice's environment, confirmed the result of 0.9 nm, and then they would have

moved on to their replicability issue, which is scientifically more relevant. Reproducibility issues

are nothing more than a nuisance. They are about results being different due to differences in

computational environments that most computer users have no control over, and don't really

care about until they have to.

So how do you provide a precisely specified computational environment? One possible answer

is a container image. But as I explained above, if all you have is a container image, you can't

explore replicability issues any more. What you want is a precisely specified and reproducible

environment. Meaning that you can run it as-is, and get exactly the same results, bit for bit, but

you can also change what's inside and see what difference that makes.

My experience from many talks, courses, and informal discussions I have had over the last years

on the topic of reproducibility is that as soon as I say "bit for bit", a resistance forms in parts of

the audience. Just over the last month, I have been called a "reproducibility extremist" twice.

The counter-argument I hear is always the same: we don't really need bit-for-bit identical

results. The tacit assumption is that going for a less strict goal, somewhere in between "Debian

12" and a precise specification, would be both easier and sufficient. And that's where I disagree.

Something less rigorous may or may not be sufficient in a specific situation. But it is definitely

not easier.

In fact, I have no idea how Alice could come up with a specification for her computational

environment that would promise Bob a result between, say, 0.88 nm and 0.92 nm. I do know,

however, how Alice can provide a bit-for-bit reproducible specification. It's actually very easy in

theory. Computers are deterministic machines. If you give them the same inputs, they produce

the same outputs. Bit-for-bit reproducibility is a matter of bookkeeping: keeping track precisely

of all the steps that were performed in constructing a computational environment. And

bookkeeping is something that computers are quite good at. In contrast, good-enough-for-me

reproducibility can only be evaluated through case-by-case domain expertise, and cannot be

designed at all.

Unfortunately, what is easy in theory turns out to be difficult in practice. The computational

infrastructure that we all use, i.e. our operating systems, package managers, compilers and

other software build tools, containerization tools, etc., was not designed with reproducibility in

mind. Outside of science, approximately nobody cares about reproducibility. The one exception

Konrad Hinsen’s blog

Why computational reproducibility matters • Page 4

https://www.fun-mooc.fr/en/courses/reproducible-research-ii-practices-and-tools-for-managing-comput/


I know of is cybersecurity experts, who require reproducibility (bit-for-bit again) as a guarantee

that a compiled program was really derived from the source code that it pretends to be

generated from, without the secret addition of malware. Most computer users need no more in

terms of software management than installing and updating programs. That's what today's

infrastructure makes easy.

Nevertheless, it is possible to make a computational environment bit-for-bit reproducible, at

least when run on identical hardware. If you want to learn how to do it, follow the MOOC. We

show how to do it using Debian snapshots, staying in the context of a well-known and widely

used Linux distribution. We also show how to do it using Guix, a next-generation package

manager (and Linux distribution) that is one of the very few tools that was designed with

reproducibility in mind. Neither path is as simple as I would like it to be, because they both

involve tools that lack user-friendly interfaces for now. It's bit like using git for version control:

it does the job, but it can be a pain to use. More work is clearly required. But it will only happen

if larger parts of the scientific community agree that it is worth doing, and direct funding

towards this task.

My conclusion is that bit-for-bit reproducibility is something that we can solve once and for all

and push into the infrastructure, such that Alice and Bob needn't worry about it any more. If

instead we go for good-enough-for-me reproducibility, it will remain a nuisance for generations

of scientsts to come. If that is an extremist opinion, so be it.

Konrad Hinsen’s blog

Why computational reproducibility matters • Page 5

https://www.fun-mooc.fr/en/courses/reproducible-research-ii-practices-and-tools-for-managing-comput/
https://snapshot.debian.org/
https://guix.gnu.org/

	Why computational reproducibility matters
	Citation
	Copyright


