
Two Apache Jena SPARQL query
performance observations
Egon Willighagen

Published July 2, 2016

Citation

Willighagen, E. (2016). Two Apache Jena SPARQL query performance observations. In chem-bla-

ics. chem-bla-ics. https://doi.org/10.59350/nwnd6-hj737

Keywords

Curation, Wikipathways, Sparql, Rdf

Copyright

Copyright © Egon Willighagen 2016. Distributed under the terms of the Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are credited.

chem-bla-ics

https://orcid.org/0000-0001-7542-0286
https://orcid.org/0000-0001-7542-0286
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

Doing searches in RDF stores is commonly done

with SPARQL queries. I have been using this

with the semantic web translation of

WikiPathways by Andra to find common content

issues, though sometimes combined with some

additional Java code. For example, find PubMed

identifiers that are not numbers.

Based on Ryan’s work on interactions, a more complex curation query I recently wrote in reply

to issues that Alex ran into with converting pathways to BioPax, is to find interactions that

convert a gene to another gene. Such occurred in WikiPathways because graphically you do not

see the difference. I originally had this query:

SELECT (str(?organismName) as ?organism) ?page

 ?gene1 ?gene2 ?interaction

WHERE {

 ?gene1 a wp:GeneProduct .

 ?gene2 a wp:GeneProduct .

 ?interaction wp:source ?gene1 ;

 wp:target ?gene2 ;

 a wp:Conversion ;

 dcterms:isPartOf ?pathway .

 ?pathway foaf:page ?page ;

 wp:organismName ?organismName .

} ORDER BY ASC(?organism)

This query properly found all gene-gene conversions to be fixed. However, it was also horribly

slow with my JUnit/Apache Jena set up. The queries runs very efficiently on the Virtuoso-based

SPARQL end point. I had been trying to speed it up in the past, but without much success.

Instead, I ended up batching the testing on our Jenkins instance. But this got a bit silly, with at

some point subsets of less than 100 pathways.

Observation #1
So, I turned to twitter, and quite soon got three useful leads. The first two suggestions did not

help, but helped me rule out the problem. Of course, there is literature about optimizing, like

this recent paper by Antonis (doi:10.1016/j.websem.2014.11.003), but I haven’t been able to

convert this knowledge into practical steps either. After ruling out these options (though I kept

the sameTerm() suggestion), and realized it had to be the first two triples with the variables ?

gene1 and ?gene2. So, I tried using FILTER there too, resulting with this query:

WHERE {

 ?interaction wp:source ?gene1 ;

 wp:target ?gene2 ;

chem-bla-ics

Two Apache Jena SPARQL query performance observations • Page 2

http://chem-bla-ics.blogspot.nl/2016/06/new-paper-using-semantic-web-for-rapid.html
http://chem-bla-ics.blogspot.nl/2016/06/new-paper-using-semantic-web-for-rapid.html
https://twitter.com/andrawaag
http://www.ncbi.nlm.nih.gov/pubmed
http://orcid.org/0000-0003-3477-7443
https://twitter.com/xanderpico
http://wikipathways.org/
http://junit.org/
https://jena.apache.org/
http://sparql.wikipathways.org/
http://sparql.wikipathways.org/
https://twitter.com/egonwillighagen/status/748817658758344704
https://twitter.com/xbib/status/748818534457716736
https://twitter.com/jervenbolleman/status/748820145028550656
https://twitter.com/soilandreyes/status/748891148182257664
http://doi.org/10.1016/j.websem.2014.11.003
https://github.com/BiGCAT-UM/WikiPathwaysCurator/commit/b8283419b252bd8525631d5035d086a15d0773e0
https://github.com/BiGCAT-UM/WikiPathwaysCurator/commit/b8283419b252bd8525631d5035d086a15d0773e0

 a wp:Conversion ;

 dcterms:isPartOf ?pathway .

 ?pathway foaf:page ?page ;

 wp:organismName ?organismName .

 FILTER (!sameTerm(?gene1, ?gene2))

 FILTER (?gene1 a wp:GeneProduct)

 FILTER (?gene2 a wp:GeneProduct)

} ORDER BY ASC(?organism)

That did it! The time to run a query halved. Not so surprising, in retrospect, but it all depends

on the SPARQL engine: which parts does it run first. Apparently, Jena’s SPARQL engine starts at

the top. This seems to be confirmed by the third comment I got. However, I always understood

engine can also start at the bottom.

Observation #2
But that’s not all. This speed up made me wonder something else. The problem clearly seems

to engine approach to run parts of the query. So, what if I remove further choices in what to run

first? That leads me to a second observation. It helps significantly if you reduce the number of

subgraphs it should later “merge”. Instead, if possible, use property paths. That again, about

halved the runtime of the query. I ended up with the below query, which, obviously, no longer

give me access to the pathway resources, but I can live with that:

WHERE {

 ?interaction wp:source ?gene1 ;

 wp:target ?gene2 ;

 a wp:Conversion ;

 dcterms:isPartOf/foaf:page ?pathway ;

 dcterms:isPartOf/wp:organismName ?organismName .

 FILTER (!sameTerm(?gene1, ?gene2))

 FILTER EXISTS {?gene1 a wp:GeneProduct}

 FILTER EXISTS {?gene2 a wp:GeneProduct}

} ORDER BY ASC(?organism)

I’m hoping these two observations may help other with using Apache Jena with unit and

integrated testing of RDF generation too.

chem-bla-ics

Two Apache Jena SPARQL query performance observations • Page 3

https://twitter.com/soilandreyes/status/748891148182257664
https://twitter.com/egonwillighagen/status/748844395701506048
https://www.w3.org/TR/sparql11-query/#propertypaths

	Two Apache Jena SPARQL query performance observations
	Citation
	Keywords
	Copyright
	Observation #1
	Observation #2

