

Quality Publishing: EndNote versus InChIs

Egon Willighagen

Published April 22, 2008

Citation

Willighagen, E. (2008). Quality Publishing: EndNote versus InChIs. In *chem-bla-ics*. chem-bla-ics. <https://doi.org/10.59350/jgk66-e2a52>

Keywords

Publishing, Inchi, Cml, Rss, Foaf

Abstract

Some publishers hesitate a bit, but others go full speed ahead into the electronic publishing era.

Copyright

Copyright © Egon Willighagen 2008. Distributed under the terms of the [Creative Commons Attribution 4.0 International License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Some publishers hesitate a bit, but others go full speed ahead into the electronic publishing era. [Noel](#) commented on my [post about OA/OD inviting added value](#) :

I heard a talk by the RSC at the ACS, saying that their RSS feeds contain InChIs now! Just thought I'd throw that out there :-)

The RSC [Project Prospect](#) is ahead of other publishers, for [over a year already](#) . Adding InChIs to RSS feeds are a cheap way of adding machine-readable chemistry to ones publishing pipeline; adding CML would allow much more detail (see [this overview of CMLRSS information in my blog](#)).

But, importantly, it allows third-parties to efficiently set up DOI-InChI tables. Cheap (Asian?) workers become rather expensive, when compared to machine mining to create such databases. Sure, the authoring becomes somewhat more expensive, but who will argue that scientists might be a bit more precise in what they publish. I, for sure, would love to see authors focus on adding InChIs to experimental sections, then that they focus on getting EndNote to put the comma, bold and upper casing in the right place, to meet journal standards.

Another publisher who takes its job seriously is [Beilstein](#). Stephan recently showed me some of the things they are up to, like information rich figures (yes, you'll have access to the source, and identify the molecular structures in reaction schema). He also showed me to the RDF now by default available for all their articles. For example, for DOI:[10.1186/1860-5397-3-50](https://doi.org/10.1186/1860-5397-3-50), the RDF is [available here](#). It's indicated in the HTML with:

```
<link rel='alternate' type='text/rdf' title='RDF' href='http://www.beilstein-journals.org/bjoc/content/rdf/1860-5397-3-50.rdf' />
```

There is, actually, also a lot of citation information available in the `<meta>` tags in the HTML, but apparently not the right stuff yet to have [Zotero](#) pick it up nicely (not sure what this Firefox plugin is actually looking for). No chemistry in the RDF it seems, but there is [BIBO](#) , [FOAF](#) and Dublin Core.

Main suggestion to Stephan, right now, would be to include InChIs in the RDF and RSS feed.

Disclaimer: [Colin](#), behind Project Prospect, visit our group when I was still in Cologne; Stephan contributed code bits to the CDK project, e.g. this [this Matrix class](#).

Oh, [Nature](#) is, of course, also a publisher who actively gets into electronic publishing age.