
A better way to manage your Github
personal access tokens
Jeroen Ooms

Published July 7, 2020

Citation

Ooms, J. (2020, July 7). A better way to manage your Github personal access tokens. rOpenSci -

Open Tools for Open Science. https://doi.org/10.59350/ezs92-3kz34

Keywords

Package, Gert, Credentials, Git, Github

Copyright

Copyright © Jeroen Ooms 2020. Distributed under the terms of the Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are credited.

rOpenSci - open tools for open science

https://orcid.org/0000-0002-4035-0289
https://orcid.org/0000-0002-4035-0289
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

We have been working hard behind the scenes on the upcoming release of our new git package

named gert, a joint effort from rOpenSci and the Tidyverse team. One of the main features of

gert is the out-of-the-box authentication mechanism, which is provided via the new credentials

package.

Among other things, the credentials package makes it possible to save and load https

authentication details from the git credential store, which is part of the official command-line

git. Thereby credentials are automatically shared between command line git and the gert

package, while safely stored by your operating system’s preferred password manager.

In this post we show how you can take this one step further, and use the credentials package to

save your GITHUB_PAT in the git credential store. This way you can authenticate with the GitHub

API using the same token that is used for HTTPS remotes in git and gert. This is convenient for

users, and also provides package authors with a mechanism to prompt the user for credentials,

without having to take responsibility for managing tokens.

Note for Windows users: the credentials package requires a recent version of Git for Windows.

What is a Personal Access Token
GitHub allows you to generate Personal Access Tokens, which you can use instead of your

password when authenticating over HTTPS, both for git remotes and the GitHub API. Major

advantages are:

If you have enabled two-factor authentication (2FA), you must use a PAT to authenticate

programmatically. You have no choice.

You can generate many PATs with specific permissions, giving you fine-grained security

control.

A PAT can easily be revoked or replaced with a new one.

In conclusion, if you are a responsible GitHub user, you have enabled 2FA on your account, and

you only ever enter your main password when authenticating on the GitHub website.

Everywhere else you should be using a PAT, preferably one that only has the permissions it

needs.

Storing and loading your GitHub PAT
Most R packages that interact with the GitHub API expect that your PAT is stored in the

environment variable GITHUB_PAT in the R process. But how does it get there? The credentials

package provides a function that will set this environment variable:

Tries to set the GITHUB_PAT environment

variablecredentials::set_github_pat()## TRUE

•

•

•

rOpenSci - open tools for open science

A better way to manage your Github personal access tokens • Page 2

https://docs.ropensci.org/gert
https://docs.ropensci.org/credentials/articles/intro.html
https://git-scm.com/docs/gitcredentials
https://git-scm.com/download/win
https://ropensci.org/blog/2020/07/07/github-pat//#what-is-a-personal-access-token
https://ropensci.org/blog/2020/07/07/github-pat//#what-is-a-personal-access-token
https://github.com/settings/tokens
https://docs.github.com/en/github/authenticating-to-github/securing-your-account-with-two-factor-authentication-2fa
https://ropensci.org/blog/2020/07/07/github-pat//#storing-and-loading-your-github-pat
https://ropensci.org/blog/2020/07/07/github-pat//#storing-and-loading-your-github-pat

This function calls out to the git credential store to get a suitable token for the github.com

domain. If no token is available yet, the git credential manager will then prompt the user to

enter one. What this looks like depends on your operating system and credential helper

configuration.

The set_github_pat() function returns TRUE when it succeeds in setting the GITHUB_PAT

environment variable, and FALSE if not. Packages that call set_github_pat() to let the user

authenticate, can check the return value to determine if authentication was successful.

Once a working PAT has been stored in the git credential store, it can automatically be loaded in

another R session by calling set_github_pat() again. The token is automatically validated,

and if it still works, the GITHUB_PAT environment variable is set without the user having to do

anything.

And here is the best part: because the token is stored under the github.com domain in the

credential store, both gert and command line git will automatically attempt to authenticate with

this token when fetching/pushing Github HTTPS remotes.

Managing the credential store
How long does the credential store remember your token? This depends on which credential

helper is in use. On all systems, git includes at least the following helpers:

cache: Cache credentials in memory for a short period of time. See git-credential-cache

for details.

•

rOpenSci - open tools for open science

A better way to manage your Github personal access tokens • Page 3

https://git-scm.com/docs/gitcredentials
https://git-scm.com/docs/gitcredentials#_configuration_options
https://ropensci.org/blog/2020/07/07/github-pat//#managing-the-credential-store
https://ropensci.org/blog/2020/07/07/github-pat//#managing-the-credential-store
https://git-scm.com/docs/gitcredentials
https://git-scm.com/docs/gitcredentials
https://git-scm.com/docs/git-credential-cache

store: Store credentials indefinitely on disk. See git-credential-store for detail

However on MacOS and Windows, git actually defaults to custom credential helpers that use the

OS password manager. On MacOS this is called keychain and on Windows this is git credential

manager for Windows. These credentials helpers can store your credentials indefinitely.

credentials::credential_helper_get()## [1] "osxkeychain"

The credentials package includes a few more utility functions to help you interact with the

credential store. To manually load credentials for a given domain use git_credential_ask:

credentials::git_credential_ask("https://github.com")## $protocol## [1]

"https"## ## $host## [1] "github.com"## ## $username## [1] "token"## ##

$password## [1] "aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d"

Use git_credential_forget to explicitly remove a credential:

Drop GITHUB_PAT credential from

storecredentials::git_credential_forget('https://token@github.com')

Alternatively, if you want to switch to another PAT, use set_github_pat(force_new = TRUE).

This will automatically drop any existing PAT from the credential store, and always prompt the

user to enter a new one.

Drop existing GITHUB_PAT and ask for a new

onecredentials::set_github_pat(force_new = TRUE)

•

rOpenSci - open tools for open science

A better way to manage your Github personal access tokens • Page 4

https://git-scm.com/docs/git-credential-store
https://github.com/microsoft/Git-Credential-Manager-for-Windows
https://github.com/microsoft/Git-Credential-Manager-for-Windows

Workflow
We still need to figure out how this will affect the recommended workflow. Currently many users

hardcode the GITHUB_PAT in the ~/.Renviron file, so that it is automatically set in every R

session. You could accomplish the same with the credentials package by adding this to your

~/.Rprofile file:

Load the GITHUB_PAT in the R sessioncredentials::set_github_pat()

However perhaps it is actually undesired to always have your GITHUB_PAT exposed in R. The

nice thing about the credentials package is that it becomes easy to load your access token on

demand. Hence, instead of setting the PAT on the start of each R session, a user or 3rd party

package could call set_github_pat() whenever it needs access to the Github API.

rOpenSci - open tools for open science

A better way to manage your Github personal access tokens • Page 5

https://ropensci.org/blog/2020/07/07/github-pat//#workflow
https://ropensci.org/blog/2020/07/07/github-pat//#workflow

	A better way to manage your Github personal access tokens
	Citation
	Keywords
	Copyright
	🔗What is a Personal Access Token
	🔗Storing and loading your GitHub PAT
	🔗Managing the credential store
	🔗Workflow

