chem-bla-ics

cdk2024 #3: an unexpected
downstream project

Egon Willighagen ®
Published June 16, 2024

Citation
Willighagen, E. (2024). cdk2024 #3: an unexpected downstream project. Chem-bla-ics. https://
doi.org/10.59350/dtfq8-5x011

Keywords
Cdk, Grant, Cdk2024

Molecules

Rendering molecules to an image is done in a few steps. First, an Image needs to be defined, for example, of 200 by 200 pixels. The next
step is to define what is to be generated, and how. The most basic rendering requires a few generators: one for the overall scene, one for
atoms, and one for bonds. Therefore, we add a BasicSceneGenerator , a BasicAtomGenerator ,and a BasicBondGenerator . We will
see later that we can add further generators to add further visualization. Now that we defined what we want to have depicted, we construct
a renderer. Because we are rendering a molecule here, we simply use the AtonContainerRenderer .

N
NZ N

\—/

Figure 16.1: 2D diagram of triazole

We also need to define, however, what rendering platform we want to use. The Java community has a few options, with the AWT/Swing
platform to be the reference implementation provided by Oracle, and the SWT toolkit as a popular second. In fact, the redesign was
needed to be able to support both widget toolkits. For rendering images, we can use the AWT toolkit. Therefore, we use a
AWTFontManager to help the renderer draw texts. We get our Grapnics2p object to which will be drawn from the earlier created image,
and we set some basic properties. Then we are ready to draw the molecule to the graphics object with the paint() method, and here
again we need a AWT-specific class: the AwTDrawvisitor .

What then remains is to save the image to a PNG image file with the Image1o helper class.
The full code example then looks like:

Script code/RenderMolecule.groovy

new DepictionGenerator ()
.withSize(660, 600)
.withMargin(0.1)
.withZoom(3.0)
.withAtomColors()
.depict(triazole)
.writeTo("RenderMolecule.png");

This results in the image of triazole given in Figure 16.1.

Rafaranrac

Copyright

Copyright © Egon Willighagen 2024. Distributed under the terms of the Creative Commons
Attribution 4.0 International License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

https://orcid.org/0000-0001-7542-0286
https://orcid.org/0000-0001-7542-0286
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

chem-bla-ics

In the CDK2024 grant we wrote about updating various software projects using the Chemistry
Development Kit. We even wrote that “[rlequired API changes will be publicly shared and
disseminated with the Groovy Cheminformatics with the Chemistry Development Kit book
(egonw.github.io/cdkbook/)"”. The Groovy Cheminformatics with the Chemistry Development Kit
book is a project that has run since 2009.

commit c5cbf9b5dd49baf582afc595¢c9cbhafc714c5199f
Author: Egon Willighagen
Date: Fri Apr 10 12:34:42 2009 +0200

Initial copy of the current draft; converted into separate project for
easier branching
for tunes of the book for workshops and sorts

The original version was in LaTeX and sold online via Lulu.com. Because all code examples were
run (the first public edition had 72 pages with 75 code examples), like RMarkdown of Jupyter
Notebooks by design, | was able to make many releases. The big advantage of this was that
when APl changes happened, this would be visible by code not compiling or by output
changing.

At some point | open sourced the book (doi:10.6084/M9.FIGSHARE.2057790.V1) and then realized
that | can convert the book to Markdown:

commit 26306992a280200188f2ae9ef3f0698964926752
Author: Egon Willighagen
Date: Mon Dec 24 16:59:14 2018 +0100

Create chapter3.md

This is the version available at egonw.github.io/cdkbook/ for some time now. So, now that for
SMARTCyp | need to update the visualization, | went book to my book of code examples (I have
a collection of more than 200 examples), but then found that the chapter on Depiction was
missing. | was not looking forward to this, because | know that the code examples predate a
massive improvement by John Mayfield of the rendering stack and | never got around to see if
the examples from the book work well enough with that new API (one is actually updated).

That is when | realized that the Groovy Cheminformatics book actually also is a downstream
project that needs updating. | have been doing this already and it's fairly smooth so that | did
not think of including it in the grant, other than updating the Migration chapter. | now had
enough time to dive into this project. | need that, because the goal of the project is also to
learn about all the meta science aspects of project maintenance, roles, communication, etc.
Therefore also this blog post: we need a track record, to collect data.

Anyway, porting the first script went fairly easy, but I am now running into a stacktrace:

cdk2024 #3: an unexpected downstream project - Page 2

https://chem-bla-ics.linkedchemistry.info/2024/04/07/cdk2024.html
https://chem-bla-ics.linkedchemistry.info/2024/05/18/cdk2024-2.html
https://cdk.github.io/
https://cdk.github.io/
https://chem-bla-ics.blogspot.com/2011/02/groovy-cheminformatics.html
https://chem-bla-ics.blogspot.com/search?q=lulu
https://en.wikipedia.org/wiki/API
https://doi.org/10.6084/M9.FIGSHARE.2057790.V1
https://github.com/egonw/cdkbook/commit/2630699aa280200188f2ae9ef3f0698964926752
https://egonw.github.io/cdkbook/
https://egonw.github.io/cdkbook/depiction
https://scholia.toolforge.org/author/Q28796322
https://egonw.github.io/cdkbook/migration
https://github.com/cdk/nwo-openscience-2024/issues/30
https://egonw.github.io/cdkbook/code/RenderMolecule.code.html

chem-bla-ics

Processing RenderSelection.groovyin
doing RenderSelection.out ...
org.codehaus.groovy.control.MultipleCompilationErrorsException: startup
failed:
/home/egonw/var/Projects/hub/cdkbook-source/code/RenderSelection.groovy: 39:
unable to resolve class ExternalHighlightGenerator
@ line 39, column 16.

generators.add(new ExternalHighlightGenerator());
org.codehaus.groovy.syntax.SyntaxException: unable to resolve class
ExternalHighlightGenerator
@ line 39, column 16.

That brings us to the task of how to find where that class is coming from, which happens to be
something | already had to write up for up for RingSearch. Dependency galore.

References

- 10.6084/M9.FIGSHARE.2057790.V1

cdk2024 #3: an unexpected downstream project - Page 3

https://github.com/cdk/nwo-openscience-2024/issues/29
https://doi.org/10.6084/M9.FIGSHARE.2057790.V1

	cdk2024 #3: an unexpected downstream project
	Citation
	Keywords
	Copyright
	References

