
Programming in the Life Sciences #8:
coding standards
Egon Willighagen

Published October 29, 2013

Citation

Willighagen, E. (2013, October 29). Programming in the Life Sciences #8: coding standards. Chem-

bla-ics. https://doi.org/10.59350/ckryb-b4v19

Keywords

Pra3006

Copyright

Copyright © Egon Willighagen 2013. Distributed under the terms of the Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are credited.

chem-bla-ics

https://orcid.org/0000-0001-7542-0286
https://orcid.org/0000-0001-7542-0286
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

Never underestimate the power of lack of coding standards in code obfuscation. Just try

randomly to read code you wrote a year ago or four years ago. You’ll be surprised with what you

find. Coding standards are like the grammar in writing: they ensure that our message gets

understood. Of course, the primary goal is that the CPU understands what you mean, but

because programming languages are not your native language, you may not always say what

you think you are saying.

Copyright and Licensing
First standard is attribution: if you use the solution of someone else, you write in your source

code whom wrote the solution. Secondly, you must allow others to do the same. Therefore, you

always add your name (and normally email address) to your source code, and under what

conditions people may use your code. This is commonly done by assigning a license. Open

Source licenses promote (scientific) collaboration, and give others the rights to use your

solution, redistribution modifications, etc. They may explicitly require attributions, but often

not. In a scholarly setting, you always give attribution, even if not required by the license.

Remember, that software falls under copyright but algorithms typically not. Copyright/author

and license information is typically added to source code using a header.

Documentation
The second thing is to document what your code is supposed to do, what assumptions are

made, how people should use it, and preferably under what conditions it will fail. Comments in

your source are just as much documentation as a tutorial in Word format. They are

complementary, and documentation must not only be targeted at users, but also at yourself so

that you understand why you added that weird check. You will not (have to) remember in two

years.

Coding standards
Just like English has coding standards, programming language have too. Both also have styles,

and a selection of a style is up to the author, but consistency is important. What coding

standards should you be thinking about, include consistent use of variable and method names,

keeping code blocks small, etc. For example, compare the following two code examples which

do the same thing:

var method = function(string) {

 number = 0

 for (var i=0; i<string.length; i++) {

 if (string[i] == "A") number = number +1

 }

 return number

}

chem-bla-ics

Programming in the Life Sciences #8: coding standards • Page 2

http://chem-bla-ics.blogspot.nl/2009/06/making-patches-attribution-copyright.html

And this version:

var countTheANucleotides = function(dnaSequence) {

 count = 0

 // iterate over all nucleotides in the DNA string

 for (var i=0; i<dnaSequence.length; i++) {

 if (dnaSequence[i] == "A") count = count +1

 }

 return count

}

Which one do you find easier to understand the function of?

use clear, descriptive variable and method names

use source code comments to describe the intention of source code

keep source code lines short enough that you can read the full line without (horizontal)

scrolling

keep code blocks short enough that the fit a single screen (say, 25 lines max)

Unit testing
It is important to realize that what you intend to have the computer to calculate is something

different that what your source code actually tells the computer to do. Even more important is

to realize that it is not always your fault if the calculation goes wrong; in particular, the input

you pass to some program can always be crafted such, that it will fool your code in doing

unintended things.

But, a common cause of misbehaving code is the author itself. At first (and many, many times

after that) it’s just getting the code to compile: missing semi-colons, typos in variable names,

etc, etc. After a bit, and hunting you down to your grave, are bugs caused by unintuitive features

of programming language, libraries you’re using, etc. Common (and often expensive) mistakes

include for-loops missing the first or the last element, incorrect conversion of units (125 M$

expensive!), etc.

Fortunately, we can call in the help of computers for this too. We have code checking tools, and

importantly, libraries to help us define (unit) tests. These tests call running code, and check if

the calculated results are matching our expectation. For example, for JavaScript we could use

the MIT-licensed qunit. For example, we could write the following tests (in qunit):

test("counting tests", function() {

 equal(1, countTheANucleotides("AGCT"));

 equal(4, countTheANucleotides("AAAA"));

 equal(0, countTheANucleotides("GCGC"));

});

1.

2.

3.

4.

chem-bla-ics

Programming in the Life Sciences #8: coding standards • Page 3

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://github.com/jquery/qunit/blob/master/MIT-LICENSE.txt

OK, you get the idea. That other scientists really start to care about these things, is shown by

these two recent papers:

Ten simple rules for the open development of scientific software

Ten simple rules for reproducible computational research

•

•

chem-bla-ics

Programming in the Life Sciences #8: coding standards • Page 4

http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1371/journal.pcbi.1003285

	Programming in the Life Sciences #8: coding standards
	Citation
	Keywords
	Copyright
	Copyright and Licensing
	Documentation
	Coding standards
	Unit testing

