
Bioclipse git experiences #2: Create
patches for individual plugins/
features

Published July 3, 2020

Citation

Willighagen, E. (2020, July 3). Bioclipse git experiences #2: Create patches for individual plugins/

features. Chem-bla-ics. https://doi.org/10.59350/7ts20-k7s71

Keywords

Bioclipse, Git

Copyright

Copyright © None 2020. Distributed under the terms of the Creative Commons Attribution 4.0

International License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

chem-bla-ics

https://orcid.org/0000-0001-7542-0286
https://orcid.org/0000-0001-7542-0286
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

This is a series of two posts repeating some content I wrote up back in the Bioclipse days (see

also this Scholia page). They both deal with something we were facing: restructuring of version

control repositories, while actually keeping the history. For example, you may want to copy or

move code from one repository to another. A second use case can be a file that must be

removed (there are valid reasons for that). Because these posts are based on Bioclipse work,

there will be some specific terminology, but the approach I regularly apply in other situations.

This second post talks about how to migrate code from one repository to another.

Create patches for individual plugins/features
While the above works pretty well, a good alternative in situations where you only need to get a

repository-with-history for a few plugins, is to use patch sets.

First, initialize a new git repository, e.g. bioclipse.rdf:

mkdir bioclipse.rdf

cd bioclipse.rdf

git init

nano README

git commit -m "Added README with some basic info about the new repository"

README

Then, for each plugin discover you need what the commit was where the plugins was first

commited, using the git-svn repository created earlier:

cd your.gitsvn.checkout

git log --pretty=oneline externals/com.hp.hpl.jena/ | tail -1

Then create patches for the last tree before that last patch by appending ^1 to the commit

hash. For example, the first patch of the Jena libraries was

06d0eb0542377f958d06892860ea3363e3316389, so I type:

rm 00*.patch

git format-patch 06d0eb0542377f958d06892860ea3363e3316389^1 -- externals/

com.hp.hpl.jena

(tune the filter when removing old patches if there are more than 99!)

The previous two steps can be combined into a Perl script:

#!/usr/bin/perl

use diagnostics;

use strict;

my $plugin = $ARGV[0];

chem-bla-ics

Bioclipse git experiences #2: Create patches for individual plugins/features • Page 2

https://web.archive.org/web/20180821111520/http://wiki.bioclipse.net/index.php?title=Git_Development
https://scholia.toolforge.org/topic/Q1769726

if (!$plugin) {

 print "Syntax: gfp <plugin|feature>\n";

 exit(0);

}

die "Cannot find plugin or feature $plugin !" if (!(-e $plugin));

`rm -f *.patch`;

my $hash = `git log --follow --pretty=oneline $plugin | tail -1 | cut -d' ' -

f1`;

$hash =~ s/\n|\r//g;

print "Plugin: $plugin \n";

print "Hash: $hash \n";

`git format-patch $hash^1 -- $plugin`;

Move these patches into your new repository:

mv 00*.patch ../bioclipse.rdf

(tune the filter when moving the patches if there are more than 99! Also customize the target

folder name to match your situation)

Apply the new patches in your new git repository:

cd ../bioclipse.rdf

git am 00*.patch

(You’re on your own if that fails… and you may have to default to the other alternative then)

Repeat those two steps for all plugins you want in your new repository

chem-bla-ics

Bioclipse git experiences #2: Create patches for individual plugins/features • Page 3

	Bioclipse git experiences #2: Create patches for individual plugins/features
	Citation
	Keywords
	Copyright
	Create patches for individual plugins/features

