chem-bla-ics

Programming in the Life Sciences #4:
communication from within HTML

Egon Willighagen ®
Published October 9, 2013

Citation
Willighagen, E. (2013, October 9). Programming in the Life Sciences #4: communication from
within HTML. Chem-bla-ics. https://doi.org/10.59350/7ex09-4x603

Keywords
Pra3006, Javascript, Html, Openphacts

Output

Results: [{"un":"http://www.conceptwiki org/concept/dd758846-1dac-4f0d-a329-06af9a7fad413",
aluminum","match":" Aspinn alummnum"}, {"un":"http://www. conceptwiki org/concept/04aba3cd-abf
aspinnate-5-(-2-chloro-6-methyl-pyndine-4-oate)"} , {"un""http //www. conceptwiki org/concept/fl
"un":"http:/f’www. conceptwiki org/concept/beOe8fad-eddd-4¢c25-9854-6£578e045587", "prefLab
Lysine","match""aspirindl-lysine"} , {"un":"http://www. conceptwiki org/concept/212614c4-9730-4¢
"un":"http:/f’www. conceptwiki org/concept/a99023df-c3d2-4fa5-82d1-89d3ald16e0e", "prefLab
a5e2e551529¢" "prefLabel" "Fenyrnipo","match" "Evaspirine"} , {"un":"http://www. conceptwiki. org/,
"un":"http:/f’www.conceptwiki org/concept/d095b69b-2a20-4¢c31-b655-8ef85a37650f", "prefLat
{"un":"http:/www.conceptwiki org/concept/584 1ca8f-1adb-4195-81bf-ecdbd37df323" "prefLabt
acid","match""dibromoaspirin"} , {"un":"http://www. conceptwiki org/concept/f383ec43-8509-4e57
bd94b8f3efe 5", "prefLabel" " APC" "match":"ASPIRIN, PHENACETIN, CAFFEINE"}, {"un""htt
"un""http:/f’www.conceptwiki org/concept/5d632093-93ef-4ea0-8174-3328aba546 16", "prefLal
3adce9albbbc","prefLabel" "Benorlate”,"match":" Aspinn acetammophen ester"}, {"un":"http://’www
"un""http:/f'www.conceptwiki org/concept/8638ac62-3539-4f0a-8a32-9b86454e23d1", "prefLal

Copyright

Copyright © Egon Willighagen 2013. Distributed under the terms of the Creative Commons
Attribution 4.0 International License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

https://orcid.org/0000-0001-7542-0286
https://orcid.org/0000-0001-7542-0286
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

chem-bla-ics

The purpose of a web service is that you give it a question or task, and that it returns an
answer. For example, we can ask the Open PHACTS platform what compounds it knows with
aspirin in the name. We pass the question (with the API key) and get a list of matching
compounds. Now, this communication is complex: it happens at many levels, which are spelled
out in the Internet Model. There are various variants of the stack of communication layers, but
we are interested mostly in the top layers, at the application layer. In fact, for this course this
model only serves as supporting information for those who want to learn more.

Practically, what matters here is how to ask the question and how to understand the answer.

We are supported in these practicalities with JavaScript libraries, in particular the ops.js library
and general JSON functionality provided by most browsers (unless the student decided to use a
different programming language, in which there are different libraries). Personally, | have only
very limited JavaScript experience, and this mostly goes back to the good old Userscript and
Greasemonkey days (wow! the paper is actually the 4th highest scoring BMC Bioinformatics
article!). But because my JavaScript knowledge is limited and rusty, | spent a good part of today,
to get a basic example running. Very basic, and barely exceeding the communication details.
That is, this is the output in the browser:

So, what does the question look like? The question is actually hardcoded in the HTML source,
but the page does take two parameters: the app_key and app_id that come with your Open
PHACTS account.

The ops.js library helps us, and wraps the Open PHACTS LDA methods in JavaScript methods.
Thus, rather can crafting special HTTP calls, we use two JavaScript calls:

var searcher = new Openphacts.ConceptWikiSearch(
"https://beta.openphacts.org",
params["app id"], params["app_key"]

);

searcher.byTag(
"Aspirin', '20', '4', '07a84994-e464-4bbf-812a-a4b96fa3d197',
callback

);

The first statement creates an LDA method object, while the second makes an actual question. |
have not defined the callback variable, which actually is a JavaScript function that looks like:

var callback = function(success, status, response){
var result = searcher.parseResponse(response);
document.getElementById("output").innerHTML =
"Results: " + JSON.stringify(result);
b

When the LDA web service returns data, this method gets called, providing asynchronous
functionality to keep the web page responsive. But when called, it first parses the returned data,

Programming in the Life Sciences #4: communication from within HTML - Page 2

http://www.openphacts.org/
http://chem-bla-ics.blogspot.nl/2013/10/programming-in-life-sciences-2-accounts.html
https://en.wikipedia.org/wiki/Internet_model
https://github.com/openphacts/ops.js
https://en.wikipedia.org/wiki/JSON
http://www.biomedcentral.com/1471-2105/8/487
http://www.biomedcentral.com/1471-2105/8/487
http://www.altmetric.com/details.php?citation_id=103983
http://www.altmetric.com/details.php?citation_id=103983
http://chem-bla-ics.blogspot.nl/2013/10/programming-in-life-sciences-2-accounts.html
http://chem-bla-ics.blogspot.nl/2013/10/programming-in-life-sciences-2-accounts.html

chem-bla-ics

and then puts the JSON output as text in the HTML. The output that is given in the earlier
screenshot.

So, hurdle taken. From here on it's easier. Regular looping over the results, creating some HTML
output, etc. The full source code if this example is available as Gist.

Programming in the Life Sciences #4: communication from within HTML - Page 3

https://gist.github.com/egonw/6902776

	Programming in the Life Sciences #4: communication from within HTML
	Citation
	Keywords
	Copyright

