
On Invariance and Inconsistency
Hans-Dieter Hiep

Published February 16, 2024

Citation

Hiep, H.-D. (2024). On Invariance and Inconsistency. Dr. Heap. https://doi.org/10.59350/2r39a-

f7740

Keywords

Lecture Notes, Program Correctness

Copyright

Copyright © Hans-Dieter Hiep 2024. Distributed under the terms of the Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are credited.

dr. heap

https://orcid.org/0000-0001-9677-6644
https://orcid.org/0000-0001-9677-6644
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

On Invariance and Inconsistency

Download the PDF version of this article.

invariance-inconsistency.pdf

301 KB

How can you explain important concepts from program correctness in a simple and intuitive

manner? In this blog post, we shall have a look at some puzzles and analyze them from the

perspective of program correctness. This way we can nicely explain and demonstrate the

usefulness of two important concepts, namely invariants and inconsistent specifications.

The puzzles we study here come from the book Algorithmic Puzzles [1] by Anany and Maria

Levitin, published by Oxford University Press in 2011. This book presents 150 puzzles that are

good candidates for applying analytical and logical thinking skills (the puzzles can also be used

as challenging interview questions). We make a small selection of the puzzles, and we will see

them answered from the perspective of program correctness. In program correctness, we

consider a program to be correct with respect to a given program specification. A program

specification is a specific formulation of a requirement. For example, a specification of what the

output of a program must be given some input. More specifically (no pun intended), we can

rephrase the puzzles in such way that a puzzle can seen as a program specification, and proving

that there exists a program that is correct with respect to that specification would then solve

the puzzle in question. Or, alternatively, we show that there is no solution to the puzzle, by

arguing there cannot be a correct program in the first place.

First we shortly revisit preliminaries (Section 2). This article does assume the reader is already

somewhat familiar with the basics of programming and program correctness, but we

nevertheless quickly revisit the basic concepts. For a thorough introduction to program

correctness, one could take a look at one of the following books (in order of appearance):

A Discipline of Programming by Edsger Dijkstra (1976),

Mathematical Theory of Program Correctness by Jaco de Bakker (1980),

The Science of Programming by David Gries (1981),

Program Verification by Nissim Francez (1992), or

Verification of Sequential and Concurrent Programs by Krzysztof Apt, Frank de Boer &

Ernst-Rüdiger Olderog (2009).

•

•

•

•

•

dr. heap

On Invariance and Inconsistency • Page 2

https://www.drheap.nl/content/files/2024/05/invariance-inconsistency.pdf

Then we shed light on the concept of an invariant by discussing the 5th puzzle of the book,

‘Row and Column Exchanges’ (Section 3). We also look at why declarative specifications are

useful by discussing the 12th puzzle of the book, ‘Questionable Tiling’ (Section 4). But we also

discuss more generally the importance of invariants and formulating consistent specifications

(Section 5).

Preliminaries
We shall restrict our attention to a simple imperative programming language:

\\begin{gathered} S \Coloneqq x \coloneqq a \mid S_1;S_2 \mid \mathbf{if}\ b\ \mathbf{then}

\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi} \mid \mathbf{while}\ b\ \mathbf{do}\ S\ \mathbf{od}

\end{gathered}\

where we use not only \x\ as variable but also \y,z,\ldots\ (possibly with subscripts), where the

terms \a\ of the language are the usual arithmetical expressions:

\\begin{gathered} a \Coloneqq 0 \mid 1 \mid x \mid -a \mid (a_1 + a_2) \mid (a_1 \times

a_2)\end{gathered}\

and where the terms \b\ of the language are the Boolean expressions:

\\begin{gathered} b \Coloneqq (a_1 = a_2) \mid (a_1 < a_2) \mid (b_1 \land b_2) \mid (b_1 \lor

b_2) \mid \lnot b\end{gathered}\

We also have the usual abbreviations, such as \(a_1 \leq a_2)\, that abbreviate more complex

expressions, such as \(a_1 < a_2) \lor (a_1 = a_2)\, respectively. The numerals \2,3,4,\ldots\ are

also abbreviations of complex expressions \(1+1), (1+2), (1+3),\ldots\

We also have first-order formulas, captured by the following syntax:

\\begin{gathered} \phi,\psi \Coloneqq b \mid (\phi \to \psi) \mid (\forall x)

\phi\end{gathered}\

Other logical connectives, such as \(\phi \land \psi)\ and \\lnot\phi\, can seen as

abbreviations. First-order logic involves first-order universal quantification \(\forall x)\phi\, and

we have the dual of first-order existential quantification \(\exists x)\phi\ as abbreviation of \

\lnot(\forall x)\lnot\phi\. Quantification only ranges over individuals, so in our case integers.

Now let us consider semantics. Let \\sigma\ be a state (an assignment of variables to integer

values). We have the usual semantics for arithmetical expressions \a\ and Boolean expressions

\b\: \[\[a]\]_\sigma\ denotes an integer value and \[\[b]\]_\sigma\ denotes a Boolean value.

Note that an expression depends only on finitely many variables, and we only deal with pure

expressions in our simple language. Each statement \S\ of our programming language denotes

a transition relation of states:

\[\[S]\]\subseteq \Sigma\times\Sigma\

where \\Sigma\ is the set of states (with typical element \\sigma\), and \\Sigma\times\Sigma\

is the set of pairs of states. A statement denotes a binary relation between initial and final

states. Each formula \\phi\ denotes a set of states:

dr. heap

On Invariance and Inconsistency • Page 3

\[\[\phi]\]\subseteq \Sigma\

in the sense that in each state \\sigma\in[\[\phi]\]\ the formula \\phi\ is true, also written \

\sigma\models\phi\.

In program correctness we combine two languages: a programming language and a

specification language. The programming language is already given above. As specification

language we take the above first-order language. Note that the variables of formulas in the

assertion language are the same variables we use in the programming language. We can now

form the Hoare triples:

\\\phi\\ S\ \\psi\\

where \\phi\ is called the precondition and \\psi\ is called the postcondition. A Hoare triple is

correct when the statement \S\ satisfies the input/output specification given by the

precondition \\phi\ and the postcondition \\psi\, and a Hoare triple is incorrect otherwise.

Note that the (global) variables of \S\ and the (free) variables of the formulas \\phi\ and \

\psi\ are bound to each other. Formally, we define

\\models \\phi\\ S\ \\psi\ \text{ if and only if } [\[S]\]([\[\phi]\]) \subseteq [\[\psi]\]\

where \R(X)\ is the left-restriction of the binary relation \R\ by the set \X\, that is, \R(X) = \y

\mid xRy\text{ for some }x\in X\\. Unpacking this formal definition gives us

\\models \\phi\\ S\ \\psi\ \text{ if and only if } \sigma\in[\[\phi]\]\text{ and } (\sigma,\tau)

\in[\[S]\]\text{ implies } \tau\in[\[\psi]\].\

Incorrectness means that \S\ has a bug. Suppose we start in some initial state \\sigma\ which

satisfies the precondition \\phi\, and we execute \S\ from that state, and that execution results

in some final state \\tau\. If the final state \\tau\ does not satisfy \\psi\, then we have found a

bug! Formally,

\\not\models \\phi\\ S\ \\psi\ \text{ if and only if } \sigma\models\phi \text{ and }(\sigma,

\tau)\in[\[S]\]\text{ and }\tau\not\models\psi\text{ for some }\sigma,\tau.\

Hoare logic is a formal system in which Hoare triples can be derived, in which case one writes \

\vdash \\phi\\ S\ \\psi\\. Hoare logic is sound and (relatively) complete, meaning that we

have

\\vdash \\phi\\ S\ \\psi\\text{ if and only if }\models \\phi\\ S\ \\psi\\

under some reasonable assumptions. See one of the books mentioned in in the introduction

for a presentation of Hoare logic, or Wikipedia.

A quick example is the following Hoare triple. Is it correct or not?

\\y = 0\\ x \coloneqq 1; \mathbf{while}\ x \leq z\ \mathbf{do}\ y \coloneqq y + x; x \coloneqq

x + 1\ \mathbf{od}\ \2\times y = z\times(z+1)\\

To verify the loop, we need to come up with a so-called loop invariant: a condition that holds at

four control points (1) before entering the loop, (2) before the loop body begins, (3) after the

1

dr. heap

On Invariance and Inconsistency • Page 4

https://en.wikipedia.org/wiki/Hoare_logic?ref=drheap.nl

loop body ends, and (4) after the loop is exited. Finding loop invariants is difficult, and often it

takes multiple tries until one finds a suitable invariant. In the above example, one can take:

\1 \leq x \leq z + 1 \land 2\times y = (x - 1)\times x\

where \(x - 1)\ abbreviates \(x + -1)\ and the chain of inequalities is conjunctive.

Invariants
In this section we discuss a puzzle in which invariants play a prominent role. The 5th puzzle of

the book Algorithmic Puzzles is ‘Row and Column Exchanges’:

Can you transform the left table into the right table of Figure 1 by exchanging its rows and

columns?

Figure 1. Initial and final

table.

(It is recommended that the reader first tries out solving this puzzle herself!)

To get a sense of what the puzzle asks for, let us perform the operations of swapping rows and

columns in a table. An example of a sequence of successive applications of these operations is

shown in Figure 2.

Figure 2. The start of a sequence of

exchanges.

This figure shows:

The first table shows the initial table of Figure 1, our starting point in this puzzle.

After the first step, we have exchanged the first and last row. So we swapped the values

\1,2,3,4\ and \13,14,15,16\.

After the second step, we have also exchanged the first and last column. So we swapped

the values \13,5,9,1\ and \16,8,12,4\.

Notice that we have now obtained a table, in which the last row coincides with the values of the

final table we wish to obtain (the last row is ‘correct’ with respect to the desired final table). To

get closer to the final table, we can continue the series of operations as in Figure 3, where we

1.

2.

3.

dr. heap

On Invariance and Inconsistency • Page 5

file:///home/hdh/Documents/drheap/posts/65cf39ddec15456d47ff336a/main.html#fig:tables
file:///home/hdh/Documents/drheap/posts/65cf39ddec15456d47ff336a/main.html#fig:series

perform two additional steps: we swap the first and third row, and we swap the second and

third row.

Figure 3. Continuing the series of

exchanges.

In the resulting table, we have colored the cells that have values in the right place when

comparing it to the final table in Figure 1. This particular example shows that we are not there

yet. Click here for a Rust implementation of this example.

Just giving this single example, where we have not solved the puzzle (since the final table is not

‘correct’), is not a solution the puzzle! But one may wonder, whether there exists a solution at

all. If there exists a solution, then we have not yet found it. But, if there is no solution to be

found, then just showing this single counter-example is not sufficient proof.

Imagine that these tables are representations of state, where the state is an assignment of

integers to variables (each cell in the table is modeled by its own variable, sixteen in total).

There are two primitive operations that work on this state:

to swap two columns \C(j,j')\, and

to swap two rows \R(i,i')\.

The puzzle can be rephrased by asking whether we can come up with a program that is

composed out of these two primitive operations. Instead of our simple programming language

given above, where the only primitive operation is the assignment \x := a\, we instead consider

the programming language with only these two primitive operations. In this way we realize

encapsulation, in the sense that the program may not directly modify the state by means of an

assignment, only indirectly through the exposed operations.

This may remind the reader of object-oriented programming. Each table could be seen as an

instance of a class of objects, which has an encapsulated internal state. The class of objects

exposes a number of operations, viz. it has a well-defined interface. We ask ourselves now: does

there exists a client, which can only work with the interface and not directly modify the internal

state, that solves our puzzle?

What does it mean to solve the puzzle? We can formulate the Hoare triple

\\\\\\bigwedge_{i\in[1,4]}\bigwedge_{j\in[1,4]}\\\x_{i,j} = (i - 1) \times 4 + j\\ S\ \x_{1,1} = 12

\land \ldots \land x_{4,4} = 1\\

where \x_{1,1}\ until \x_{4,4}\ are the sixteen variables corresponding to the cells of the table.

Note that in the postcondition we simply require the variables to have the proper values, as

•

•

2

dr. heap

On Invariance and Inconsistency • Page 6

file:///home/hdh/Documents/drheap/posts/65cf39ddec15456d47ff336a/main.html#fig:tables
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=8481cfe72a96f11d697b4c909f22449a&ref=drheap.nl

indicated in Figure 1. If we can find a program \S\ that is composed of only these primitive

operations, and prove it correct, we have solved the puzzle!

To understand the meaning of the primitive operations, we give a set of Hoare triples that we

take as axioms (technically, we give an axiom scheme). This approach is also known as the

‘axiomatic approach’, where we abstract from the exact semantics of the primitive operations.

Here we go (assuming meta-variables \j\in[1,4]\ and \j'\in[1,4]\):

\\\\\\bigwedge_{i\in[1,4]}\\\x_{i,j} = y_r \land \\\\bigwedge_{i\in[1,4]}\\\x_{i,j'} = z_r\\ C(j,j')\ \\\

\\bigwedge_{i\in[1,4]}\\\x_{i,j} = z_r \land \\\\bigwedge_{i\in[1,4]}\\\x_{i,j'} = y_r\\

The ‘freeze variables’ \y_1,\ldots,y_4\ capture the old values at column \j\, and \z_1,\ldots,z_4\

capture old values at column \j'\. In the postcondition, we use the (unchanged) freeze variables

to refer to the old values at the beginning of the swapping operation. This argument crucially

relies on the fact that the operation \C(j,j')\ only changes the variables in the set \\x_{i,j},x_{i,j'}

\mid i\in[1,4]\\. By Hoare’s invariance rule, we know that any property about the other variables

thus remains invariant. A similar axiom scheme can be given for swapping the rows.

We could think of an object invariant: a property that holds of the internal state of the object,

that must be preserved by every operation that is performed by any client. Note that object

invariants may be temporarily broken in the implementation of an operation, as long as the

object invariant is restored before the implementation terminates.

The beauty of invariants is that they are a powerful tool for answering these kinds of puzzle

questions. When we are able to find some invariant, that is true for the initial table but false for

the final table, then we must know: the final table cannot be obtained by means of these

operations only, since all the operations preserve the object invariant!

An example of an object invariant in this case would be the property: the table has the values \

\1,\ldots,16\\. In other words, every value in the table is in \\1,\ldots,16\\ and every value of \

\1,\ldots,16\\ is somewhere in the table. Let’s formalize it (Equation 1):

\\x_{i,j} \mid 1\leq i,j \leq 4\ = \1,\ldots,16\.\

The set comprehension on the left collects all values in the table in a set. The set expression on

the right is the finite set consisting of the integers \1\ up to and including \16\. The property

now expresses that these two sets are identical, i.e. have precisely the same members. This

property holds for the initial state of the object, and it also is preserved by every operation:

swapping two rows, or swapping two columns, does not introduce any new values and thus

does not invalidate this property. Hence, this property is an object invariant.

The final table of Figure 1 also satisfies the object invariant of Equation 1. So this invariant,

while nice to know, is not useful in answering the puzzle question. We can only prove that there

is no solution to the puzzle when we find an invariant, that holds of the initial state and is

preserved by the operations, but does not hold in the final state.

Just how finding loop invariants (to show the correctness of a program) is a difficult problem,

finding object invariants (to show there can be no correct program) is also a difficult problem.

dr. heap

On Invariance and Inconsistency • Page 7

Finding invariants may require several tries. Let us try another invariant. Consider that we not

only have a set of values, but in fact we have a set of sets of values:

\\bigl\\x_{i,j} \mid 1\leq i\leq 4\\mid j \leq 4\bigr\ = \bigl\\1,2,3,4\,\ldots,\13,14,15,16\\bigr\\

The outer set consists of the sets corresponding to the values one finds at each row. And the

inner sets consists of the values present at each row. If we swap two rows, the invariant is

preserved because the outer set does not care about the order of its values (sets of integers). If

we swap two columns, then the invariant is preserved, because the set of values at each row

remain the same when we have swapped two columns.

Now, looking at Figure 1 we see that the initial table satisfies this property. However, if we look

at the final table we see that it does not satisfy this property. The final table has as set of sets

of integers:

\\bigl\\12,10,11,9\,\16,14,15,13\,\8,6,7,5\,\4,3,2,1\\bigr\.\

Sure, the first and last row are correct, so we could focus on comparing the sets

\\bigl\\16,14,5,13\,\8,6,7,15\\bigr\ \text{ and } \bigl\\16,14,15,13\,\8,6,7,5\\bigr\\

which cannot be equal because both sets contain values that are not contained in the other

set. Hence the final table does not satisfy the invariant, which finally proves that there is no

solution! (We shall further discuss this problem in Section 5.)

Logical specifications
We have a look at the 12th puzzle of the Algorithmic Puzzles book, ‘Questionable Tiling’ (with a

slightly different phrasing):

Is it possible to tile an 8-by-8 board with dominoes (2-by-1 tiles) such that no two dominoes

lie next to each other in parallel?

(Again, the reader should first try to solve this puzzle herself!)

Before even beginning to solve the problem, we should first try to get an exact understanding of

the puzzle by understanding each part of the question:

What is a ‘tiling of dominoes’ on an 8-by-8 board?

What does it mean when two dominoes ‘lie next to each other in parallel’?

Suppose we formalize the 8-by-8 board, again by means of a table. Each cell of the table is

again understood to be represented by the variables \x_{i,j}\ where \i\ is the row counted from

the top and \j\ is the column counted from the left. But what do the values of these variables

mean? We could devise the following encoding:

If a variable \x_{i,j}\ has value \0\ it means that the cell is empty.

If a variable \x_{i,j}\ has some positive value, then that positive value identifies a

domino piece.

•

•

•

•

dr. heap

On Invariance and Inconsistency • Page 8

For example, see Figure 4 where we have a table that encodes an 8-by-8 board with only four

dominoes. Note that in this and the following pictures, only the numbers in the cells are

significant and not the colors. Colors are only for visual aid. Further, what is shown in Figure 4 is

not a tiling yet, it is a partial tiling and towards becoming a complete tiling.

Figure 4. An encoding of dominoes on an 8-by-8

board.

One fruitful approach would be looking for patterns. A pattern is, figuratively speaking, a small

‘frame’ or ‘scope’ that you locally could observe in the picture. These patterns are ‘timeless’ and

observed of the outcome, and thus do not care about the intermediary state one has passed

through to obtain the outcome. Finding patterns is a useful ability of a declarative programmer.

One can observe already the following properties:

Property 1.

(Number of dominoes in tiling)

In an 8-by-8 table, a complete tiling has exactly \\frac{8\times 8}{2}=32\ numbers

identifying domino pieces.

Property 2.

(Size of single domino)

Every number identifying a domino piece occurs at most twice.

Property 3.

(Dominoes line up)

Given a cell of a table that contains a number identifying a domino. Now consider its

immediate neighborhood (the cells on the top, right, bottom, left—but not the diagonal

cells). We observe that the following must hold: a cell above, on the left, below, or on the

right of the given cell exists and has the same domino identifying number. The other

neighboring cells must have a different value. See also Figure 5 for a picture, but note

that these patterns only work for interior cells. For cells on the border, the pattern need

not check outside bounds.

dr. heap

On Invariance and Inconsistency • Page 9

Figure 5. Patterns to check that numbers line up.

Here, \(k\) is the number identifying a domino and we have \(k\neq

n_1\), \(k\neq n_2\), \(k\neq n_3\).

Now, consider completing the tiling in Figure 4. What domino do we place on the left of the

domino identified by number three (the blue one)? It will form a 2-by-2 square. We also form a

2-by-2 square if we would place another domino directly below and in parallel with the domino

identified by number four (the purple one). These are undesired according to the puzzle.

We end up with the following property:

Property 4.

(No parallel dominoes)

In each 2-by-2 square there are not exactly two dominoes. See Figure 6 for the two

forbidden patterns.

Figure 6. Two patterns that show how two dominoes

form a 2-by-2 square.

We can now formalize the properties, and obtain a program specification.

Property 1.

(Number of dominoes in tiling)

\|D| = 8\times 8\

where \D\ is the set of domino identifying numbers that occur somewhere in the table,

that is, \D = \x_{i,j} \mid 1 \leq i,j\leq 8\\cap\n\mid n > 0\\.

Property 2.

(Size of single domino)

\|\(i,j) \mid k = x_{i,j}\text{ and }1\leq i,j\leq 8\| = 2\text{ for each }k\in D.\

Property 3.

(Dominoes line up)

For every \1\leq i,j\leq 8\ there is some \\ell\in K(i,j)\ such that

\x_{i,j} = x_\ell \land\mkern-34mu\bigwedge_{k\in K(i,j)\setminus\\ell\}\mkern-26mu

x_{i,j}\neq x_{k}\

dr. heap

On Invariance and Inconsistency • Page 10

where \K(i,j)\ is the set of neighboring coordinates within bounds

\\(i+1,j),(i,j+1),(i-1,j),(i,j-1)\ \cap \(i',j')\mid 1\leq i',j'\leq 8\.\

Technically, we have that \x_{(i,j)}\ is defined to be equal to \x_{i,j}\ so we can use the

coordinates to refer to a particular subscripted variable.

Property 4.

(No parallel dominoes)

For every \1 \leq i,j < 8\ we have

\|\x_{(i,j)},x_{(i+1,j)},x_{(i,j+1)},x_{(i+1,j+1)}\\cap\n\mid n > 0\| \neq 2.\

These properties can be abbreviated to \P1,P2,P3,P4\, respectively. Now the puzzle amounts to

finding a program \S\ that changes the variables \x_{1,1},\ldots,x_{8,8}\ such that we can prove

\\\mathbf{true}\\ S\ \P1\land P2\land P3\land P4\.\

Consider a program that assigns the cells’ values according to Figure 7. We can now verify

whether the program indeed satisfies the specification, by checking whether all properties hold.

Figure 7. An encoding of dominoes on an 8-by-8

board (we use a duotrigesimal numbering system, the shifted ‘extended

hex’ numbers).

\P1\ holds because there are exactly 32 dominoes in the final state assigned to the variables.

\P2\ holds since every number identifying a domino piece occurs exactly twice. Also \P3\ holds,

and this can easily be seen by the different colors. However, checking \P4\ shows that the

property is violated (see the center).

If we slightly generalize the problem, then we see there is a solution. Suppose the board is

infinite, i.e. we have an \\infty\-by-\\infty\ board, which we start tiling from the top-left corner.

Then the following brick laying pattern can be continued indefinitely (see Figure 8):

Start horizontally with the dominoes \A_1,A_2,\ldots\ and lay the next on the right of the

previous one until the entire first row is covered with dominoes.

Continue vertically with the dominoes \B_1,B_2,\ldots\ and lay the next below the

previous one until the entire first column is also covered with dominoes.

•

•

dr. heap

On Invariance and Inconsistency • Page 11

We are now in the same situation as before: we want to fill an \\infty\-by-\\infty\ board,

so we repeat the strategy of first laying \C_1,C_2,\ldots\ horizontally and then laying

\D_1,D_2,\ldots\ vertically.

Figure 8. Laying dominoes on an

\(\infty\)-by-\(\infty\) board.

Such an infinite board would then satisfy these properties:

The number of dominoes on the infinite board are also infinite.

If we make sure that each domino is represented by a different number, then each such

number occurs only twice. For example, we could take the numbering scheme where for

each domino that lies on the coordinates \(i,j)\ and \(i',j')\ we take as identifier \

\min(2^i3^j,2^{i'}3^{j'})\.

The dominoes are placed correctly, as can be observed from the coloring.

There are no parallel dominoes, since each 2-by-2 square has exactly three dominoes.

Note that we avoided the occurrence of four dominoes within a 2-by-2 square, as shown in

Figure 9.

Figure 9. Laying dominoes in such a way that

thereare four different dominoes in the middle 2-by-2

square.

More generally, we never have any of the patterns in Figure 10 occurring. These patterns are

called the top-right corner and bottom-left corner. Note that these patterns do occur in Figure

9, so already from knowing the absence of these two corners we also know that there can be no

four different dominoes within a 2-by-2 square.

•

•

•

•

•

dr. heap

On Invariance and Inconsistency • Page 12

Figure 10. Patterns that never occur in the

infinitesolution.

Now suppose we would cut off the board of Figure 8 so to obtain an 8-by-8 board. We then see

problems occurring at the boundaries, with dominoes sticking out. Here are two instances:

On the first column, we see that the domino \B_4\ falls out of bounds. Hence the only

way to lay down that domino is by turning it 90 degrees.

On the second row, we see that the domino \C_4\ also falls out of bounds. Also here we

would need to lay down that domino turned by 90 degrees.

What we thus see, is that whenever the board is finite, it must have one of the corners of Figure

10. We shall now argue that it is impossible to satisfy \P4\, the property that no dominoes are

parallel, whenever we have the (necessary) top-left corner and also either the bottom-left or

the top-right corner on the board. We make a number of simplifying assumptions, but these do

not hurt our demonstration (that is to say, these assumptions are without loss of generality):

we assume we work on an arbitrary \n\-by-\n\ board where \n\ is even,

we assume we start with the same type of top-left corner and top-right corner where the

horizontal domino is on top,

we assume that both corners occur on the same height.

Figure 11. Starting situation of the impossibility

result.

Now consider the situation of Figure 11. Consider that, if we were to satisfy all properties \P1\

until \P4\, it is impossible to place a domino vertically next to \B_1\ nor is it possible to place a

domino vertically next to \C_n\. If we were to place a domino horizontally at the low end at

\B_1\ (thus forming a bottom-left corner), then we need to place another domino on top that

violates \P4\. Hence the only dominoes that are possible are depicted in Figure 12. We end up

with the other type of corner (where the vertical domino is on the side) and we can again

analyze where to place the next domino in the corner next to \B_1\ and below \C_1\, and next

to \C_n\ and below \C_{n-1}\. After analyzing the possibilities and ruling out those that violate

\P4\ we end up with the situation depicted in Figure 13.

1.

2.

•

•

•

dr. heap

On Invariance and Inconsistency • Page 13

Figure 12. Second situation

Figure 13. Third situation

After continuing this way, we see that we construct two ‘lines’, one originating from each corner.

It is necessarily the case that these two lines will intersect!

Figure 14. Last part of the impossibility

result.

In Figure 14 we see the two lines coming diagonally out of the top-left corner and the top-right

corner intersect. The way this plays out is as follows: we start with the corner consisting of

dominoes \\1,2\\ (the top-left corner) and dominoes \\A,B\\ (the top-right corner). Then we

necessarily place domino \3\, but this takes the same place as we would take when we would

place a domino in the other corner. We now have two corners, but they share a domino, namely

the dominoes \\2,3\\ (the top-left corner) and the dominoes \\3,B\\ (the top-right corner). We

then place \4\ and \D\ in the only way possible inside these corners, but we see that this gives

us a parallel pair of dominoes in a 2-by-2 square.

Summarizing, the argument goes as follows. If there are two corners on the board that induce a

‘diagonal line’ that intersect, this must give rise to a pair of parallel dominoes. Hence we can

not have both a top-left corner and a top-right corner on the board. However, for every \n\-by-

\n\ board tiling it is necessary to have both a top-left corner and a top-right corner. Hence we

cannot have a tiling of the \8\-by-\8\ that also has no parallel dominoes.

Conclusion
We have now seen two example puzzles, which we phrased by means of asking whether we can

come up with a program that satisfies certain requirements. In the first example (Section 3) we

have seen that the program’s requirements can (1) be stated formally, and (2) a final state was

dr. heap

On Invariance and Inconsistency • Page 14

file:///home/hdh/Documents/drheap/posts/65cf39ddec15456d47ff336a/main.html#sec:invariants

[1]

imaginable that satisfies the end goal, but (3) there was no correct program that reaches the

final state. In the second example (Section 4) we have seen that the requirements themselves

can (1) be stated formally, but already that (2) a final state was not imaginable that satisfies the

end goal. If there is no final state that satisfies the requirements, it is impossible to write a

correct program. This must be a valid conclusion, since each program only moves from state to

state, and there does not even exist a state that satisfied the requirements.

All this serves to show is that program correctness is a difficult subject. It shows that sometimes

it is ‘easy to ask’ but ‘difficult to deliver’. Extensive analysis of a problem is required to obtain (1)

a formal description of the problem, and (2) proof that the requirements are consistent. Even

before one starts writing a program, one already has to face an undecidable problem: namely,

to check that the requirements are consistent! And we have seen a concrete example that this

is not always the case—even when the problem looks simple. If we then have requirements that

are satisfiable, we then face the second difficult problem: does there exists a correct program?

We have seen that, no, this is not obvious either. To show that there does not exists a correct

program, we need to formulate an invariant that any program preserves but which the final

state violates. On the other hand, whenever there exists a non-trivial program (i.e. involving a

loop) we also face a difficult problem: to prove it correct requires us to come up with an

invariant as well.

This finally gives us two slogans:

To show a program is correct, requires one to find an invariant.

To show there is no correct program, also requires one to find an invariant.

and

Correctness is impossible to attain if the requirements are inconsistent.

Bonus questions

Can you analyze the problem of swapping rows and columns also in the context of

concurrent client programs?

What about tiling the board without parallel dominoes when the boundaries are glued to

each other in weird (non-Euclidean) ways?

References
Anany Levitin and Maria Levitin. Algorithmic Puzzles. Oxford University Press. https://

doi.org/10.1093/oso/9780199740444.001.0001

Access to an oracle that provides the valid formulas in arithmetic (this is an undecidable

problem), and the expressivity of loop invariants.↩

Technically, the ‘quantifiers’ in the precondition are not first-order quantifiers but

instead abbreviations where \i\ and \j\ are meta-variables that range over finitely many

1.

2.

1.

2.

dr. heap

On Invariance and Inconsistency • Page 15

file:///home/hdh/Documents/drheap/posts/65cf39ddec15456d47ff336a/main.html#sec:spec
https://doi.org/10.1093/oso/9780199740444.001.0001?ref=drheap.nl
https://doi.org/10.1093/oso/9780199740444.001.0001?ref=drheap.nl

constant values: thus the formula is a big conjunction with sixteen clauses where each

clause specifies the value of precisely one variable.↩

dr. heap

On Invariance and Inconsistency • Page 16

	On Invariance and Inconsistency
	Citation
	Keywords
	Copyright
	Preliminaries
	Invariants
	Logical specifications
	Conclusion
	Bonus questions

	References

