
A sound and complete proof system
for separation logic (part 1)
Hans-Dieter Hiep and Frank de Boer

Published June 29, 2024

Citation

Hiep, H.-D., & de Boer, F. (2024). A sound and complete proof system for separation logic (part 1).

Dr. Heap. https://doi.org/10.59350/2gkd1-c0k49

Keywords

Research

Copyright

Copyright © Hans-Dieter Hiep et al. 2024. Distributed under the terms of the Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are credited.

dr. heap

https://orcid.org/0000-0001-9677-6644
https://orcid.org/0000-0001-9677-6644
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

A sound and complete proof system for separation logic (part 1)

Download the PDF version of this article.

soundness-completeness-separation-logic-part1.pdf

292 KB

Introduction
In this article we have another look at the proof system for separation logic that is introduced

in the first author’s PhD thesis: New Foundations for Separation Logic [5] (publicly defended on

Thursday, May 23rd, 2024).

By separation logic we mean the logic behind the assertion language used in Reynolds’ logic,

the program logic for reasoning about the correctness of pointer programs that was introduced

in 2002 by J.C. Reynolds [9]. In that article, Reynolds introduces both his program logic and

axiomatizes the logic of separation logic by several axioms, but writes:

Finally, we give axiom schemata for the predicate \\mapsto\.

(Regrettably, these are far from complete.)

In 2021, completeness of quantifier-free separation logic was established [3], and three year

later completeness of the full language of separation logic [5].

The purpose of this article is to show the novel proof system of [5] in a straightforward way. The

new proof system can be used to prove all valid formulas, which until now were impossible to

prove using existing automatic and interactive tools for separation logic. In Section 2 we quickly

revisit the formulas of separation logic, in Section 3 we introduce the proof system, and in

Section 4 we have a look at a number of example proofs. We then continue the discussion that

motivates the design of the proof system: in Section 5 we discuss referential transparency and

the binding structure of separation logic, and in Section 6 we discuss issues such as univalence,

well-foundedness, and finiteness.

This article is part one of a series of articles about the new proof system for separation logic. In

this article, we focus on the syntax of the proof system. In Section 7, the conclusion, we discuss

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 2

https://www.drheap.nl/content/files/2024/06/soundness-completeness-separation-logic-part1.pdf
https://scholarlypublications.universiteitleiden.nl/handle/1887/3754463?ref=drheap.nl

the topics of the next parts of this series, namely semantics and the soundness and

completeness of the proof system.

Preliminaries
The syntax of formulas of separation logic is defined as follows:

\\phi,\psi \Coloneqq \bot \mid (x\hookrightarrow y) \mid P(x_1,\ldots,x_n) \mid (\phi\to\psi)

\mid (\forall x)\phi \mid (\phi\mathrel{*}\psi) \mid (\phi\mathrel{-\mkern-4.5mu *}\psi)\

where we assume there is a countably infinite set of variables \V\ with typical examples \x,y,z\

(possibly with subscripts), and we have a signature which has a countably infinite set of non-

logical symbols each assigned to a fixed arity of which \P\ is a typical example with arity \n\.

We have the usual logical symbols: \\bot\ stands for falsity and \(\phi\to\psi)\ stands for

logical implication. From these two symbols we can derive all other propositional connectives,

such as negation \\lnot\phi\, verum \\top\, logical conjunction \(\phi\land\psi)\, and logical

disjunction \(\phi\lor\psi)\. We have universal quantification \(\forall x)\phi\ where the

variable \x\ is bound in the usual way, and we can define existential quantification \(\exists x)

\phi\ as the dual \\lnot(\forall x)\lnot\phi\. By \FV(\phi)\ we mean the set of free variables in

\\phi\. Quantification is first-order in the sense that quantification ranges over individuals.

Finally, we also have equality \(x = y)\ as a non-logical symbol, but with a fixed meaning. (Our

treatment of parentheses and resolution of ambiguity is standard: we may leave parentheses

out as long as the result is not too ambiguous.)

What is different in separation logic compared to classical first-order logic are the following so-

called separation symbols (distinguished from the logical and non-logical symbols). The

primitive formula \(x \hookrightarrow y)\ is called points to (as in ‘\x\ points to \y\’) or a

reference (as in ‘\x\ is a reference to \y\’). As complex formulas, two separating connectives are

given: \(\phi\mathrel{*}\psi)\ is a separating conjunction, and \(\phi\mathrel{-\mkern-4.5mu

*}\psi)\ is a separating implication. The latter connective is also called the magic wand by

some authors. Having ‘points to’ \\hookrightarrow\ as primitive allows us to define ‘strict points

to’ \\mapsto\ as follows, where we take \(x\mapsto y)\ to abbreviate

\(x \hookrightarrow y)\land (\forall z,w.\(z \hookrightarrow w) \to x = z).\

The intention is that \(x \hookrightarrow y)\ expresses that location \x\ has value \y\,

whereas \(x \mapsto y)\ expresses furthermore that \x\ is the only location allocated. We also

have the abbreviations \(x \hookrightarrow -)\ and \(x \mapsto -)\, where we immediately

existentially quantify away the value. These express that \x\ is allocated (possibly among other

locations) and, moreover, that only \x\ is allocated. By \\mathbf{emp}\ we mean nothing is

allocated, so it abbreviates \\forall x(\lnot(x\hookrightarrow -))\, i.e. every location \x\ does

not point to some value, or equivalently \\forall x,y.\\lnot(x\hookrightarrow y)\.

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 3

Proof system
In this section we introduce a novel proof system for separation logic. In this article we look at

the proof system from a purely syntactical point of view. In the next article of this series, we

give the standard semantics of separation logic.

The first device we introduce is a special \\mathbf{let}\ construct, in the following sense:

\\mathbf{let}\ (x \hookrightarrow y) := \psi(x,y)\ \mathbf{in}\ \phi.\

This construct allows us to change the meaning of ‘point to’ in \\phi\, by assigning it the

meaning denoted by \\psi(x,y)\. Intuitively speaking, to evaluate whether \\mathbf{let}\ (x

\hookrightarrow y) := \psi(x,y)\ \mathbf{in}\ \phi\ holds, we first consider the heap denoted by

\\psi\ (with free variables \x\ and \y\) and then we evaluate whether \\phi\ holds in the heap

described by \\psi\. We must be careful not having a too naïve interpretation of \\mathbf{let}\:

we cannot just simplify by replacing the occurrences of \(x\hookrightarrow y)\ in \\phi\ by \

\psi(x,y)\, because separating connectives are referentially opaque (this is explained in more

detail in Section 5). The purpose of our proof system is to reason about this \\mathbf{let}\

construct in a formal way.

Working with \\mathbf{let}\ takes much space, so instead we use the shorthand notation \

\phi\mathord{@}_{x,y}\psi\. Thus, the objects of our proof system involve not just the formulas

of separation logic, but an extended language (called extended separation logic) in which we

add this special construct:

\\phi,\psi \Coloneqq \ldots \mid (\phi\mathord{@}_{x,y}\psi)\

Next, we introduce a proof system with as objects the formulas of extended separation logic.

This proof system allows us to deduce formulas: a deduction is also called a proof, and we shall

give a number of example proofs. Recall that we have a signature that has a countable infinite

supply of non-logical symbols. For any formula of extended separation logic, its parameters are

the predicate symbols of the signature that occur somewhere in the formula. In particular, we

shall make use of so-called ‘bookkeeping devices’, which are binary predicate symbols \R\

(possibly with quotes or subscripts) from the signature. Sometimes we have the side-conditions

that our bookkeeping devices are ‘fresh’, in the sense that they do not appear as parameters of

formulas in the context.

We present the proof system as a Hilbert-style axiom system, but nothing prevents us from also

giving the proof system in the style of natural deduction. We have the usual proof rules and

axioms of classical logic (but instantiated with formulas of extended separation logic), together

with the following axioms:

\\phi\leftrightarrow(\phi\mathord{@}(x\hookrightarrow y))\(Lookup)

\((x'\hookrightarrow y')\mathord{@}\psi)\leftrightarrow \psi[x,y := x',y']\(Replace)

\(\mathbf{false}\mathord{@}\phi)\leftrightarrow\mathbf{false}\(\@\bot\)

•

•

•

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 4

\((\phi\to\psi)\mathord{@}\chi)\leftrightarrow(\phi\mathord{@}\chi\to

(\psi\mathord{@}\chi))\(\@\\\to\)

\((\forall x\phi)\mathord{@}\psi)\leftrightarrow (\forall x)(\phi\mathord{@}\psi)\ if

\x\not\in FV(\psi)\(\@\forall\)

\(\phi\mathord{@}(\psi\mathord{@}\chi))\leftrightarrow ((\phi\mathord{@}\psi)

\mathord{@}\chi)\(Assoc)

\(\forall x,y(\psi\leftrightarrow\chi))\to ((\phi\mathord{@}\psi)

\leftrightarrow(\phi\mathord{@}\chi))\(Extent)

\((\phi\mathrel{*}\psi)\mathord{@}\chi)\to (\chi=R_1\uplus R_2 \to (\phi\mathord{@}

R_1)\to (\psi\mathord{@}R_2)\to \xi)\to\xi\(\\mathrel{*}\E)

\\chi=\chi_1\uplus \chi_2 \to (\phi\mathord{@}\chi_1)\to (\psi\mathord{@}

\chi_2)\to((\phi\mathrel{*}\psi)\mathord{@}\chi)\(\\mathrel{*}\I)

\((\phi\mathrel{-\mkern-4.5mu *}\psi)\mathord{@}\chi)\to(\chi\perp\chi')

\to(\phi\mathord{@}\chi')\to((\psi\mathord{@}(\chi\lor\chi'))\to \xi)\to\xi\(\

\mathrel{-\mkern-4.5mu *}\E)

\(\chi\perp R\to (\phi\mathord{@}R)\to (\psi\mathord{@}(\chi\lor R(x,y))))\to

((\phi\mathrel{-\mkern-4.5mu *}\psi)\mathord{@}\chi)\(\\mathrel{-\mkern-4.5mu *}\I)

We have the side-condition in the rule (\\mathrel{*}\E) that the symbols \R_1\ and \R_2\ are

fresh, i.e. are not parameters of \\phi,\psi,\chi,\xi\. Similarly, we have the side-condition in the

rule (\\mathrel{-\mkern-4.5mu *}\I) that the symbol \R\ is fresh, i.e. is not a parameter of \

\phi,\psi,\chi\. We used \@\ without subscripts instead of \@_{x,y}\ to reduce notational

clutter. To avoid confusion, we may use \\mathbf{false}\ instead of \\bot\ and \\mathbf{true}\

instead of \\top\.

\\psi[x,y := x',y']\ is the result of simultaneous substitution of \x\ by \x'\ and \y\ by \y'\,

respectively. The substitution operator \\phi[x := x']\ is defined compositionally as usual, and

has the following specification for the new connective:

\(\phi\mathord{@}_{x,y}\psi)[z := z'] = (\phi[z := z']\mathord{@}_{x,y}\psi[z := z'])\

where \x,y,z\ are all distinct. If \z\ is either the same variable as \x\ or \y\, then the

substitution is not pushed down on the right side. A similar definition can be given for

simultaneous substitution of distinct variables.

We let \\chi=\chi_1\uplus \chi_2\ abbreviate the formula

\(\chi \equiv \chi_1\cup \chi_2) \land (\chi_1\perp \chi_2)\

and let \{\chi\equiv \chi_1\cup \chi_2}\ abbreviate the formula

\\forall x,y(\chi(x,y)\leftrightarrow \chi_1(x,y) \lor \chi_2(x,y))\

and let \{\chi_1 \perp \chi_2}\ abbreviate the formula

•

•

•

•

•

•

•

•

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 5

\\forall x,y\bigl(\chi_1(x,y) \to \forall z.\lnot \chi_2(x,z)\bigr).\

These abbreviations universally quantify \x,y\: we let these quantifiers, on purpose, capture the

free variables \x\ and \y\ of \\chi,\chi_1,\chi_2\. When \\chi_1\ and \\chi_2\ are just the binary

predicate symbols \R_1\ and \R_2\, we mean the formulas \R_1(x,y)\ and \R_2(x,y)\. One can

also use set builder notation to make the intention more clear. Note that in the latter

abbreviation, \\chi_1\perp\chi_2\, we require the stronger notion of disjointness of the

domains of the relation, not the weaker notion of disjointness of the two sets of pairs

representing the pairs that are related by each relations.

Further, a useful result in practical reasoning is that we can replace equivalent subformulas in

any formula. Moreover, the deduction theorem also holds for our proof system, hence we can

apply the axioms under any context. We furthermore shall use the above proof system in a

natural deduction style.

Example proofs
Let us now have a look at a number of example proofs. We shall write \\vdash\phi\ to mean

that \\phi\ is demonstrable in the proof system given above without any premises, and \

\Gamma\vdash \phi\ to mean that \\phi\ is demonstrable using the premises in \\Gamma\.

The first example is given in Figure 1. The statement we want to prove has the following intuitive

meaning: in the heap described by \\bot\ we have that \\mathbf{emp}\ is satisfied. The

argument is the following: the heap described by \\bot\ is the empty graph (no location is

mapped to any value), so evaluating \\mathbf{emp}\ in that heap indeed yields a true formula.

In the proof that follows, we do not explicitly write down how to do classical reasoning, and

instead we focus on the application of the new axioms.

Figure 1. Proof of \(\mathbf{emp}\) in the empty

heap.

The second example is given in Figure 2. We prove that for any (extended) separation logic

formulas \\phi\ and \\psi\, their separating conjunction is commutative. The proof proceeds in

two parts. In step 9, we have shown how to swap the two separated formulas relative to the

heap \(x\hookrightarrow y)\. But this heap description has the same extension as the ‘outer’

heap, hence we obtain the non-relative result in step 10! As such, we can obtain the result

simply by putting the given formula under this \@\-connective. We add formulas to the context

by means of opening a box, so at step 6 we have established:

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 6

\(\phi\mathrel{*}\psi)\mathord{@}(x\hookrightarrow y),(x\hookrightarrow y) = R_1\uplus

R_2,\phi\mathord{@}R_1,\psi\mathord{@}R_2\vdash (\psi\mathrel{*}\phi)\mathord{@}

(x\hookrightarrow y).\

Figure 2. Proof of commutativity of

\(\mathrel{*}\).

See Figure 3 and Figure 4 for the third and fourth examples. Figure 3 is a generalization of the

result in Figure 1. Note that in step 5 of Figure 4 we use the result proven in Figure 3. What

should be obvious now is that the proofs are not very difficult: we use our set theoretic

intuition for dealing with heaps. Both Figure 2 and Figure 4 show that (\\mathrel{*}\E) simply

adds fresh parameters \R_1,R_2\ and the corresponding assumptions to the context. This shows

that separating connectives behave almost like a quantifier, if we compare it with the way first-

order quantification works (as in Figure 3).

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 7

Figure 3. Proof that \(\mathbf{emp}\) holds and

only holds in empty heaps.

Figure 4. Proof that \(\mathbf{emp}\) is a unit of

separating conjunction.

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 8

The reader can now try and write down the proofs for the following formulas:

\\vdash (\phi\lor\psi)\mathrel{*}\chi \leftrightarrow \phi\mathrel{*}\chi \lor

\psi\mathrel{*}\chi\,

\\vdash (\phi\land\psi)\mathrel{*}\chi \to \phi\mathrel{*}\chi \land \psi\mathrel{*}

\chi\,

\\vdash (\exists x \phi(x))\mathrel{*}\psi \leftrightarrow \exists x (\phi(x)\mathrel{*}

\psi)\,

\\vdash (\forall x \phi(x))\mathrel{*}\psi \to \forall x (\phi(x)\mathrel{*}\psi)\,

\\vdash \phi\mathrel{*}(\phi\mathrel{-\mkern-4.5mu *}\psi)\to\psi\.

At last, we have the following non-trivial properties:

\\vdash (x\hookrightarrow y) \leftrightarrow (x\mapsto y)\mathrel{*}\top\,

\\vdash \lnot(x\hookrightarrow -) \to (((x\mapsto y) \mathrel{-\mkern-4.5mu *}

(x\mapsto y)\mathrel{*}\phi)\leftrightarrow \phi)\,

\\vdash ((\exists x(x\hookrightarrow y))\mathrel{*}(\exists x(x\hookrightarrow y)))

\leftrightarrow (\exists x((x\hookrightarrow y)\land \exists z(z\neq x\land

(z\hookrightarrow y))))\.

The last property is very important. It shows that separation logic can be used to express

cardinality properties of the universe. The last property shows the separation logic equivalent

of the classical expression of the property ‘there are at least two elements’. When we scale this

property, to ‘there are at least \n\ elements’, one will see that the separation logic formula

grows linearly but the classical logic equivalent grows drastically faster: quadratically! This is

the essence of the scalability argument motivating the use of separation logic.

Our proof system is able to prove this equivalence. However, existing proof systems for

separation logic still lack the ability to prove this elementary fact. We have investigated

whether the equivalence of these formulas can be proven in an interactive tool for reasoning

about separation logic: the Iris project [6]. In current versions of that system, it is not possible

to show the equivalence of these assertions, at least not without adding additional axioms.

The last example is a demonstration of the following equivalence:

\\begin{array}{c} (x \hookrightarrow -) \land ((x = y \land z = w) \lor (x \neq y \land

(y\hookrightarrow z)))\ \leftrightarrow\ (x \mapsto -) \mathrel{*}((x \mapsto w) \mathrel{-

\mkern-4.5mu *}(y \hookrightarrow z)). \end{array}\

This equivalence is expressed in quantifier-free separation logic, for which a complete

axiomatization was already known [3]. We can also give a proof, see Figure 5. Surprisingly, this

already exceeds the capability of all the automated separation logic provers in the benchmark

competition SL-COMP. In fact, only the CVC4-SL tool [8] supports the fragment of separation

•

•

•

•

•

•

•

•

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 9

logic that includes the separating implication. However, from our own experiments with that

tool, we have that it produces an incorrect counter-example and reported this as a bug to one

of the maintainers of the project. In fact, the latest version, CVC5-SL, reports the same input as

‘unknown’, indicating that the tool is incomplete.

Figure 5. Proof of an equivalence between a

semi-pure and separating formula.

So far, we have seen several valid formulas of separation logic, which in the novel proof system

for separation logic we are actually able to prove. This alone already shows our proof system

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 10

goes beyond the ability of existing tools for reasoning about separation logic! The novelty of

this proof system lies in the fact of adding a \\mathbf{let}\ binding construct, which in

shorthand is written using the \@\-connective, that relativates the heap with respect to which

a formula is interpreted.

Referential transparency
In this section we discuss the binding structure of separation logic, and how the concept of

referential transparency applies. Referential transparancy is a general concept in formal

languages and as such applies to both logical and programming languages. Although

Whitehead and Russell already speak of it, Quine is often credited for introducing the term in

his book Word and Object [7] originally published in 1960. In the case of separation logic, we

shall see that the separating connectives fail referential transparency!

Separating connectives capture references, the ‘points to’, that occur in subformulas. In the

binding structure of first-order logic, one could resolve unintentional capturing by means of a

so-called ‘capture avoiding’ substitution operator that renames quantified variables before

actually performing a substitution. However in separation logic, one cannot define such a

capture avoiding substitution operator since in separation logic there is only a single heap in

scope that can not be renamed.

First, we shall make some general remarks about the binding structure of separation logic

formulas. A formula is pure if no separation symbol \\hookrightarrow,\mathrel{*},\mathrel{-

\mkern-4.5mu *},\mathord{@}\ occurs in it. In that case the meaning of a formula does not

depend on the heap, viz. the interpretation of \\hookrightarrow\. Otherwise, a formula is semi-

pure if only the separation symbol \\hookrightarrow\ occurs in it. A formula in which one of the

separating connectives occur is called a separating formula. We have the usual notions of free

variable occurrence and bound variable occurrence, as our notion of variable binding is the

same as in first-order logic. But, in separation logic, we also have another binding structure,

namely that of references: the meaning of ‘points to’ is different under the separating

connectives.

To see why separation logic fails referential transparency, consider the reference to ‘the value

of location \y\’ in the proposition ‘the value of location \y\ has property \P\’. To avoid that ‘the

value of location \y\’ is ill-defined, when speaking of the value one implicitly intends there

exists a unique value. Moreover, linguistically speaking, a reference is free if we can replace it by

any other expression that is equal to it, without affecting the truth value of the proposition

after replacement compared to the proposition before replacement. Often this is called the

principle of substitutivity . For example, given that ‘the value of location \y\’ equals ‘the value

of location \z\’, when we replace a reference of the former by the latter in the expression ‘the

value of location \y\ has property \P\’ to obtain ‘the value of location \z\ has property \P\’, we

obtain an equivalent proposition: so we have that the reference ‘the value of location \y\’

occurs free. A context is said to be referentially transparent whenever it preserves the free

references: every free reference remains a free reference under the given context. Otherwise,

the context is referentially opaque.

1

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 11

In classical logic all propositional connectives are referentially transparent. The only

referentially opaque connectives are the quantifiers under specific circumstances. This is easy

to see for a given formula \P(x)\ with a free variable \x\. Suppose \x = 5\, then by substitutivity

we know that \P(5)\ is equivalent to \P(x)\. However, some quantifiers fail referential

transparency, since for example in the formula \\exists x(P(x))\ we can no longer naïvely

replace \x\ with \5\ when we know \x = 5\. If the quantified variable is not the same as one of

the free variables (either in the subformula or in the expression being substituted), we do

maintain referential transparency. To ensure referential transparency there is the convention of

keeping bound and free variables separate, analogous to the so-called Barendregt variable

convention [4, Sect. 5.2].

In separation logic, however, many contexts involving separating connectives are referentially

opaque. For example, in the context of a separating conjunction it is not always the case that

we can freely replace references by equivalent expressions. An example is where the value of

location \y\ is equal to the value of location \z\, and where we also separate the locations \y\

and \z\. Formally, we have the equality on the left, and the separation on the right:

\(\forall x_1.\(y\hookrightarrow x_1) \to \forall x_2.\(z\hookrightarrow x_2) \to x_1 = x_2) \land

((\exists x.\(y \hookrightarrow x)) \mathrel{*}(\exists x.\(z \hookrightarrow x))).\

Although we know that locations \y\ and \z\ have the same value, we cannot literally replace

\y\ for \z\ in the left component of the separating conjunction, without also doing the reverse

replacement (replacing \z\ for \y\) in the other component of the separating connective. Thus

we no longer have that the reference ‘the value of location \y\’ is free when it is nested under a

separating conjunction: separating conjunction is referentially opaque!

To understand the binding structure of separation logic, we introduce the notions of direct and

indirect binding. A reference (a ‘points to’ construct) or a separating connective is directly

bound to the separating connective under which it is nested, without any other separating

connective in between. Thus, here by nesting we only have to look at separating connectives in

the immediate context, not at the logical connectives. A reference or a separating connective is

said to be free whenever it is not directly bound. A reference or a separating connective is

indirectly bound to all the separating connectives under which it is nested, but not immediately

nested. In a sense, indirect binding is the transitive but irreflexive closure of direct binding.

Another example is the following formula involving magic wand:

\\forall y. (\forall z (z\mkern 2mu\not\mkern-2mu\hookrightarrow y)) \to ((x\hookrightarrow y)

\mathrel{*}(y \hookrightarrow x) \mathrel{-\mkern-4.5mu *}(\forall w.(w\hookrightarrow y)

\leftrightarrow w = x))\

which expresses the following concept: for every value \y\ that the heap does not refer to, if we

were to extend the heap with a cycle between the locations \x\ and \y\, then in the resulting

heap the location \x\ is the only location which has value \y\. So how does the binding

structure of this formula look like? Syntactically, there are four references (‘points to’

constructs) in this formula and two separating connectives. Each of these entities are either

bound or free. The left-most reference is free, and the other three references are bound. These

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 12

three references are nested under the magic wand, so directly or indirectly bound to that magic

wand. The magic wand itself is free. The right-most reference is directly bound to the magic

wand. The other two references are directly bound to the separating conjunction. See Figure 6

for a graphical depiction of the parse tree and the binding structure of references and

separating connectives to separating connectives.

Figure 6. A parse tree showing the binding

structure of separation logic. Direct bindings are shown with dotted

lines pointing to a separating connective. Free references and free

separating connectives are shown in red.

There is a difference with the variable binding structure of first-order logic: if a variable is

bound to a quantifier, then it no longer necessarily has a relationship with the free variables of

the same name. Quantifiers thus introduce a so-called scope for each variable. This is different

for separation logic: although a reference can be directly bound to a separating connective,

there still can be a necessary relationship with references that occur outside the connective to

which it is bound. For example, in Figure 6 we have that both the free reference and the magic

wand speak about the same heap (the ‘outer’ heap), but also the right-most reference under

the magic wands speaks about (part of) that outer heap: namely, for every \z\neq x\ we also

have \\lnot(z\hookrightarrow y)\ due to the equivalence on the right-side of the magic wand.

The moral is that separation logic has ‘leaky scopes’. But it is also possible to define

constructions in separation logic that have proper scopes. For example, the formula \

\blacksquare\phi\ has the intuitive meaning that \\phi\ holds for all heaps (its formal

definition is given in the next section). It thus acts as a universal quantifier for heaps. And we

can also define \\blacklozenge\phi\ as the dual \\lnot\blacksquare\lnot \phi\, that acts as an

existential quantifier for heaps. Just like quantifiers in first-order logic, we have that \

\blacksquare\phi\ and \\blacklozenge\phi\ introduce a proper scope of the ‘points to’

construct inside \\phi\, which is different from the ‘points to’ construct outside.

The formula \\blacksquare\phi\ is a so-called heap independent formula. A heap independent

formula is a formula for which its truth value does not depend on the ‘current’ heap in which it

is evaluated. For example, the pure fragment of separation logic, comprising no separation

symbols, is heap independent. But also \\blacksquare\phi\ is heap independent, even when it

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 13

contains ‘points to’ constructs and separating connectives in \\phi\. All references and

connectives under \\blacksquare\ are bound and the scope is closed: no ‘leaky scope’ for the

black box.

Univalence, well-foundedness and finiteness
We now introduce the modality \\blacksquare\phi\ as the abbreviation

\\mathbf{true}\mathrel{*}(\mathbf{emp}\land (\mathbf{true}\mathrel{-\mkern-4.5mu *}\phi)).

\

We also have the dual \\blacklozenge\phi\ defined as \\lnot\blacksquare\lnot\phi\. We have

that both modalities have the same binding strength as classical negation. The intuitive reading

of the modal operators is that \\blacksquare\phi\ holds in a given ‘current’ heap whenever \

\phi\ holds for all heaps (including the current heap), and \\blacklozenge\phi\ holds in a given

current heap whenever \\phi\ holds in some heap (which may be different from the current

heap). As such, these modal operators change the heap with respect to which a formula is

evaluated.

In fact, we have the following valid formulas involving these modalities:

\\vdash \blacksquare (\phi \to \psi) \to \blacksquare\phi \to \blacksquare\psi\,

\\vdash \blacksquare \phi \to \phi\,

\\vdash \blacksquare \phi \to (\phi@\psi)\,

\\vdash \blacksquare(\phi\to \phi') \to \blacksquare(\psi\to\psi') \to (\phi\mathrel{*}

\psi) \to (\phi'\mathrel{*}\psi')\,

\\vdash \blacksquare(\phi'\to \phi) \to \blacksquare(\psi\to\psi') \to (\phi\mathrel{-

\mkern-4.5mu *}\psi) \to (\phi'\mathrel{-\mkern-4.5mu *}\psi')\.

These formulas can all be proven in our novel proof system (their proofs are great exercises for

the reader). We also have that the rule of necessitation is admissible, in the sense that \\vdash

\phi\ implies \\vdash \blacksquare \phi\, but whether this rule is also effectively derivable is

not known to us.

We now consider an example of using the black box modality \\blacksquare\. In our treatment

of separation logic, we do not necessarily impose so-called ‘functionality’ or ‘univalence’ of the

heap. This means that it is possible that

\(x\hookrightarrow y) \land (x\hookrightarrow z) \land y\neq z\

is true in some situation. We thus treat \\hookrightarrow\ as a relation symbol. One intuitive

way to interpret the ‘points to’ relation would be from object-oriented programming, where the

object \x\ has some reference to the object \y\ by one of its fields, but we abstract away

through which field object \x\ references object \y\. It is not difficult to obtain univalence by

•

•

•

•

•

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 14

restricting ourselves to those situations where there is at most one value, by means of the

property:

\\forall x,y,z.\(x\hookrightarrow y) \land (x\hookrightarrow z) \to y = z.\

That all heaps are univalent can be simply expressed by:

\\blacksquare(\forall x,y,z.\(x\hookrightarrow y)\land (x\hookrightarrow z)\to y = z).\

We also have the following modality \\Box\phi\, introduced as the abbreviation

\\lnot(\top\mathrel{*}\lnot\phi).\

Also the dual \\Diamond\phi\ is defined as \\lnot\Box\lnot\phi\. The intuitive reading of

these modal operators is different, in the sense that \\Box\phi\ holds in a given heap

whenever \\phi\ holds for all subheaps of the given heap. Similarly, \\Diamond\phi\ holds in a

given heap whenever \\phi\ holds for some subheap of the given heap.

An example of the \\Box\ modality is the following. We say that a value \x\ is reachable if there

is a location \y\ which refers to it, so \\exists y.(y\hookrightarrow x)\. Conversely, a location \y\

is allocated whenever it refers to a value, so \\exists x.(y\hookrightarrow x)\. Consider that

allocated locations can also be used as values, so we can have an allocated and reachable

location. This way, we can form chains of so-called traversals:

\x_0\hookrightarrow x_1\hookrightarrow x_2\hookrightarrow \ldots \hookrightarrow x_n\

which abbreviates the conjunction of \x_i\hookrightarrow x_{i+1}\ for \0\leq i < n\. Whenever

\x_n\ is not allocated, the traversal has reached a dead-end. However, whenever in a traversal

the first and last location are the same, we have a cycle: it is then possible to keep on

traversing the heap indefinitely.

We say that a heap is well-founded whenever for every non-empty subheap there is some

allocated but unreachable location. This is expressed formally as:

\\Box(\lnot\mathbf{emp}\to \exists x.(x\hookrightarrow -)\land \forall y.(y\mkern

2mu\not\mkern-2mu\hookrightarrow x)).\

The claim is now that there are no cycles in a well-founded heap. To see why, suppose towards

contradiction we have a well-founded heap (in which the above formula is true) in which there

exists a cycle

\x_0\hookrightarrow x_1\hookrightarrow x_2\hookrightarrow \ldots \hookrightarrow

x_n\hookrightarrow x_0.\

Then take the subheap which consists precisely of the locations \\x_0,\ldots,x_n\\, that is, we

ignore all the locations not visited as part of the cycle. This subheap is non-empty. But we can

not take any \x_i\ as witness, since every location is reachable! This is a contradiction.

When speaking of modal operators, it is useful to speak of the ‘current’ heap (with respect to

which any formula in separation logic is evaluated), the ‘outer’ heap (which is the heap with

respect to which an enclosing formula is evaluated) and the ‘inner’ heap (which is the current

heap while evaluating a subformula). This terminology is also useful when speaking about the

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 15

separating connective \(\phi\mathrel{*}\psi)\, where we would speak of the ‘outer’ heap with

respect to which the entire formula is evaluated, and two ‘inner’ heaps corresponding to the

evaluation of \\phi\ and \\psi\.

The point of the discussion above is that we can now understand more clearly what happens

with the \@\-connective. Suppose now that \\psi\ is pure, so it does not have any (free)

references. Then we have that \(\phi\mathord{@}\psi)\ and the formula

\\blacksquare((\forall x,y.\ (x\hookrightarrow y)\leftrightarrow \psi(x,y))\to \phi)\

are equivalent. (We discuss this and related formulas in more detail below.) Clearly, this is a

heap independent formula, due to the black box! However, when \\psi\ is not pure, the formula

\(\phi\mathord{@}\psi)\ is not heap independent. In the \@\-connective, the crux is that the

‘points to’ symbol in \\psi\ is relevant and its meaning depends on the ‘outer’ heap, whereas

the ‘points to’ symbol in \\phi\ is intentionally captured by the \@\-connective where its

denotation is described by \\psi\. The \@\-connective thus changes what is the ‘current’ heap

when evaluating \\phi\. This is similar to what the modal operator \\Box\phi\ does, in which

also we have an ‘inner’ and ‘outer’ heap, but where the former is a subheap of the latter heap.

In the \@\-connective the ‘inner’ heap is described by \\psi\, which may depend on the ‘outer’

heap when it is not a heap independent formula.

Existence of the empty heap, where nothing is allocated, is expressed by:

\\blacklozenge(\forall x,y.\ (x\mkern 2mu\not\mkern-2mu\hookrightarrow y)).\

But what about the opposite, the existence of a heap in which every location is allocated? Could

the formula

\\blacklozenge(\forall x\exists y.\ (x\hookrightarrow y))\

be true? Or what about the existence of a heap in which every value is reachable? Could the

formula

\\blacklozenge(\forall y\exists x.\ (x\hookrightarrow y))\

be true? No, in the standard interpretation of separation logic, based on the integers, these

formulas are false because heaps are finitely-based partial functions!

Suppose we work with the standard integers \\mathbb{Z}\, and we have in our signature the

usual arithmetical symbols. If we want to ensure we only deal with finite, univalent heaps, then

we should take the following formulas as axioms:

\\begin{array}{c} \blacksquare(\forall x,y,z.\(x\hookrightarrow y)\land (x\hookrightarrow z)\to y

= z)\ \blacksquare(\exists x_0,x_1.\\forall x,y.\ (x\hookrightarrow y)\to x_0\leq x \leq x_1)

\end{array}\

The first axiom expresses univalence. The second axiom expresses boundedness, that is, for

every heap there is a bound on the domain, that is, there is a maximum and minimum location.

Every finitely-based partial function satisfies these property (a finitely-based partial function

can be seen as a finite list of location-value associations, and the maximum and minimum can

be computed). Conversely, every heap that satisfies both axioms can be represented by a

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 16

finitely-based partial function: there are only finitely many locations between the minimum and

maximum location (due to boundedness) that can be assigned at most one value (due to

univalence).

Note that in the standard interpretation of separation logic on the integers, we never treat the

heap as a total map, where every location must have a value. It thus always remains a

possibility for a location to be unallocated, i.e. the location \x\ is unallocated in a situation

whenever

\\forall z(x\mkern 2mu\not\mkern-2mu\hookrightarrow z)\

holds—which expresses that there is no value to which \x\ points. In non-standard

interpretations of separation logic, we do have the possibility of an infinite heap.

Conclusion
The proof system we introduce makes use of a new \@\-connective which allows to interpret

the points-to relation in terms of a logical description. It bears some relation with hybrid logic

[1] which features so-called nominals and satisfaction operators. Temporally, the nominals

describe when is ‘now’, and the satisfaction operator allows to evaluate a formula with respect

to a given nominal, thereby changing when is ‘now’. As such, hybrid logic allows to express more

than modal logic: an example is “At 6 o’clock, the church bells ring six times.” This sentence is

more time-specific than the usual modal operators for expressing ‘always’ or ‘sometimes’.

Comparing with the \@\-connective, we see that \@\ is even more general notion than what a

satisfaction operator provides, since we introduce it as a connective between formulas. This

means that formulas can now also take the place of the nominals in hybrid logic, and this allow

us to describe a situation, that is, the ‘current’ heap, by means of a formula.

An important result is that our new proof system allows us to show many more equivalences

than existing proof systems for separation logic. Thus we go beyond the capability of many

existing tools for (automatic or interactive) reasoning about separation logic! It is quite

surprising that none of the existing tools can verify some of our particular equivalences. We

think this is due to the abstract description of the separating connectives in terms of

cancellative partially commutative monoids (cf. separation algebras [2]). How to combine this

abstract description with a set-theoretical interpretation of the points-to relation is

problematic. This seems to suggest we should start developing new kinds of tools for automatic

or interactive reasoning about separation logic, or adjust the existing tools to be able to work

around current limitations.

The presented proof system is sound and complete. This will be elaborated upon in following

blog posts. In part two we study standard and non-standard interpretations of separation logic,

and give the main argument of relative completeness of the novel proof system. Relative

completeness is a completeness argument relative to an oracle. This approach is necessary

since absolute completeness for standard separation logic is not possible due to failure of

compactness. Other topics that we will discuss in this series of articles concern the impact on

Reynolds’ program logic [9], expressivity of separation logic and separation logic as an

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 17

https://plato.stanford.edu/entries/logic-hybrid/?ref=drheap.nl

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

intermediate logic between first-order logic and second-order logic, and intuitionistic

separation logic.

How to cite?
You can cite this article using BibTeX:

@misc{drheap2024sl1,

 title={A sound and complete proof system for separation logic (part 1)},

 author={Hiep, {Hans-Dieter} A. and de Boer, Frank S.},

 howpublished={{\bf dr.\,heap}},

 day={29},

 month={06},

 year={2024},

 DOI={TODO}

}

Or by including the following attribution:

Hans-Dieter A. Hiep and Frank S. de Boer. A sound and complete proof system for separation

logic (part 1). dr. heap, 2024. DOI: TODO.

References
Torben Braüner. Hybrid logic and its proof-theory. Springer. https://doi.org/

10.1007/978-94-007-0002-4

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and abstract

separation logic. In 22nd annual IEEE symposium on logic in computer science (LICS

2007), 2007. IEEE, page 366–378. https://doi.org/10.1109/LICS.2007.30

Stéphane Demri, Étienne Lozes, and Alessio Mansutti. A complete axiomatisation for

quantifier-free separation logic. Log. Methods Comput. Sci. volume 17, number 3 (2021).

https://doi.org/10.46298/lmcs-17(3:17)2021

David Herman and Mitchell Wand. A theory of hygienic macros. In Programming

languages and systems: 17th european symposium on programming, 2008. Springer, page

48–62. https://doi.org/10.1007/978-3-540-78739-6_4

Hans-Dieter A. Hiep. New foundations for separation logic. PhD thesis. Leiden University.

Retrieved from https://hdl.handle.net/1887/3754463

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek

Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent

separation logic. Journal of Functional Programming volume 28, (2018). https://doi.org/

10.1017/S0956796818000151

Willard Van Orman Quine. Word and object. MIT press. https://doi.org/10.7551/mitpress/

9636.001.0001

Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King. A decision procedure for

separation logic in SMT. In International symposium on automated technology for

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 18

https://doi.org/10.1007/978-94-007-0002-4?ref=drheap.nl
https://doi.org/10.1007/978-94-007-0002-4?ref=drheap.nl
https://doi.org/10.1109/LICS.2007.30?ref=drheap.nl
https://doi.org/10.46298/lmcs-17(3:17)2021?ref=drheap.nl
https://doi.org/10.1007/978-3-540-78739-6_4?ref=drheap.nl
https://hdl.handle.net/1887/3754463?ref=drheap.nl
https://doi.org/10.1017/S0956796818000151?ref=drheap.nl
https://doi.org/10.1017/S0956796818000151?ref=drheap.nl
https://doi.org/10.7551/mitpress/9636.001.0001?ref=drheap.nl
https://doi.org/10.7551/mitpress/9636.001.0001?ref=drheap.nl

[9]

verification and analysis, 2016. Springer, page 244–261. https://doi.org/

10.1007/978-3-319-46520-3_16

J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings 17th annual IEEE symposium on logic in computer science, 2002. page 55–74.

https://doi.org/10.1109/LICS.2002.1029817

What is called a ‘free reference’ here comes from Quine’s ‘purely referential position’.

But, we already use the word ‘pure’ in a different sense, namely that any formula that

involves the ‘points to’ construct itself is not pure. Hence we use instead the term ‘free

reference’.↩

1.

dr. heap

A sound and complete proof system for separation logic (part 1) • Page 19

https://doi.org/10.1007/978-3-319-46520-3_16?ref=drheap.nl
https://doi.org/10.1007/978-3-319-46520-3_16?ref=drheap.nl
https://doi.org/10.1109/LICS.2002.1029817?ref=drheap.nl

	A sound and complete proof system for separation logic (part 1)
	Citation
	Keywords
	Copyright
	Introduction
	Preliminaries
	Proof system
	Example proofs
	Referential transparency
	Univalence, well-foundedness and finiteness
	Conclusion
	How to cite?
	References

